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ABSTRACT
1. The use of math models in the study of human history is for the
most part a relatively new phenomenon and as such poses special
problems of appropriateness.
2. Math models have distinct limitations, and the conditions of
generality, reality, and precision impose special constraints on the
use and utility of math modeling. 
3. Science has used mathematics for some time, however, science
per se does not require mathematics but rather the testing of ap-
propriately constructed hypotheses.  
4. The work of Charles Darwin, specifically his theory of natural
selection, represents an example of good science without mathe-
matics.
5. The work of the founding fathers of the neo-Darwinian synthesis,
biometricians, and others represents a paradigm shift in the inves-
tigation of continuous versus discontinuous evolutionary change,
which was best addressed with the use of mathematical models.
6. Problems define approaches, not the other way around.  There-
fore, the utility of math depends on the nature of the problem.
7. History can be defined as a branch of science in so much as po-
tentially falsifiable hypotheses can be framed regarding historical
processes, which may then be subject to a variety of testing proce-
dures.
8. The data of Frank and Thompson (2005) lend themselves to
graphical representation and a variety of mathematical proce-
dures.
9. By quantifying the qualitative representation of economic con-
traction and expansion during the Chalcolithic and Bronze Ages,
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the synchrony and asynchrony of the nascent world system be-
comes more apparent.
10. Macro-events, particularly the significant declines terminating
the Early, Middle, and Late Bronze Ages, lend themselves to the
techniques of math modeling when transformed graphically.
11. FFT curve fitting produces models which exhibit periodicity
during the time period investigated and can be extended as null
hypotheses into more recent periods.
12. Using the models of Solé et al. (2001) the relationship between
recovery times from collapses and the level of complexity ulti-
mately attained by the recovering regions can be studied.
13. The graphical model of the Chalcolithic/Bronze Age economic
fluctuations exhibits four periods of increase or recovery, and each
succeeding period shows increasing levels of complexity as re-
vealed by the model of Solé et al. (2001). This bears further inves-
tigation.

INTRODUCTION

It is difficult to imagine math modeling being considered as
a potential tool for historical research twenty or thirty years ago. Of
course there were isolated sub-domains of the study of human his-
tory that did so, e. g. historical demography, but on the whole the
disciplines of applied mathematics and history did not overlap. At
this point in time the question must be asked: why is contact and
exchange between these two disciplines occurring now? The an-
swer, I believe, can be found by observing the larger picture of the
state of global knowledge and global human interaction. Currently,
the quantity of human knowledge doubles in a relatively short pe-
riod of time, say, a little over a year, but the doubling time itself
has also been reducing resulting in a massive and, for some, un-
manageable quantity of information. In his 1998 book, Consil-
ience, E. O. Wilson recognized this problem of knowledge accu-
mulation and suggested the following solution, ‘The answer
is clear: synthesis. We are drowning in information, while starving
for wisdom. The world henceforth will be run by synthesizers,
people able to put together the right information at the right time,
think critically about it, and make important choices wisely’.
The answer then to the original question, Why now?, with respect
to contact between math and history is at least two fold. First, by
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default all disciplines are crossing new boundaries because of their
expanding knowledge content. Second, these contacts, trespassing
in some instances, require understanding new relationships within
and between disciplines, and this in turn brings to light new ques-
tions begging new approaches to their solutions. As a result, cross
fertilization between many previously isolated or partially isolated
areas of human knowledge is now occurring, and the history-math
interface is simply one among many. This notion of synthesis
quoted from Wilson, more specifically of using
a synthetic approach to problem solving, will become more appar-
ent as (actual) models are introduced later in this paper. However,
prior to working with actual models, the limits and process of
modeling need to be addressed.

Mathematics, applied mathematics, brings with it a style of
reasoning not necessarily uncommon to any particular type of
analysis, but this reasoning is also certainly not pervasive among
historians, or more broadly, social scientists in general. There are
a number of problems applying mathematics in any non-
mathematical context. I wish here to draw attention to two prob-
lems, which might be identified as the limits to modeling and the
limits to models.

The application of math to the analysis of historical problems
requires an ability to match historical relationships to mathematical
ones and vice versa. This is not always easy as math models fre-
quently generalize, whereas the historian is all too painfully aware
of detail. For instance, stating that population size and growth rate
are interdependent and limited by available resources does not at
all recognize the particulate nature of a specific population and the
interrelationships within that population among its subgroups and
individuals. However, if a mathematical model were to be con-
structed to account for the detail, the realism of
a specific set of demographic circumstances, then that model
would be of limited use, functional only with the limits it was tai-
lored to fit. Consequently, generality would be sacrificed for real-
ism or perhaps precision. The historian on the other hand can take
into account these things and can place the details of a specific set
of circumstances within broader context and with more facility
than the math modeler. The limits imposed by modeling, that only
two of the following three conditions – generality, precision, and re
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ality – can be satisfied at any given moment (see Levins 1966) are
not (necessarily) shared by the historian. 

Let us consider a specific example, one that is germane to the
immediate subject of limitations of problems solving approaches
and is also pertinent to the broader concern of the worth of math
modeling. Consider the following:

Technology is messy and complex. It is difficult to define
and to understand. In its variety, it is full of contradic-
tions, laden with human folly, saved by occasional benign
deeds, and rich with unintended consequences. Yet today
most people in the industrialized world reduce technol-
ogy's complexity, ignore its contradictions, and see it as
little more than gadgets and as a handmaiden of commer-
cial capitalism and the military. Too often, technology is
narrowly equated with computers and the Internet, which
are mistakenly assumed to have been invented and devel-
oped in a private-enterprise market context…

In the following chapters, I draw upon and summa-
rize the ideas of public intellectuals, historians, social sci-
entists, engineers, natural scientists, artists, and archi-
tects… (Hughes 2005)

In the passage above from Human-Built World, Thomas P.
Hughes notes that technology is messy and describes his approach
to analyzing the relationship of technology and culture as one in
which he will recruit the ideas of individuals associated with the
technology-culture interphase in a variety of ways. Hughes' ap-
proach is descriptive, analytical, synthetic, evaluative, and the list
goes on. He is able to bring to bear on the problem a variety of per-
spectives, and this multiplicity of approach is not, for the most part,
available to the math modeler. However, even though the associa-
tion between assertion and evidence is logico-deductive,
it is certainly not quantitative and hardly mathematical. Hughes'
approach is dictated by context and perspective, both of which re-
quire detailed, case-by-case assessments, and it is this focus on in-
dividual cases that can obscure general patterns. The messiness that
Hughes refers to has lead most social scientists (including histori-
ans) to positions such as that described by Korotayev et al. (2006):

The view that any simple general laws are not observed at
all with respect to social evolution has become totally
predominant within the academic community, especially
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among those who specialize in the Humanities and who
confront directly in their research all the manifold unpre-
dictability of social processes. 

First, the problems that social scientists, including historians,
work on very often require focus on individual examples, the cases
mentioned above. Second, due to this focus sometimes the ability
to generalize and to recognize broad patterns is reduced.
As mentioned above, reality and precision are emphasized.

The application of mathematics to the sciences, initially to
physics but also to other branches of science, e. g. chemistry and
geology, to which physical models apply, has produced significant
progress in understanding these sciences. It should be noted that
the variability characteristic of these sciences, while considerable,
is not (nearly) as great as that characteristic of the evolutionary sci-
ences, a category that I would place history and the social sciences
within. In fact, variability is a necessary and sufficient condition
for the evolution of any system, since without variability there
would be no differential selection and therefore no adaptable
changes. Also, the difference in scale between the investigator and
what is being investigated in the so called hard sciences is usually
much greater than in the evolutionary sciences, save possibly cer-
tain aspects of molecular biology. Again, as a consequence,
in the former the forest occupies the field of view, and in the latter
the individual tree receives most of the focus, so that on the surface
generality is more easily attainable with the forest in broad focus.
Ultimately, math modeling may be initially more amenable to
problems in which variability is relatively small and scale differ-
ences between the investigator and what is investigated are rela-
tively great. However, good science looks for patterns and ignores
messiness no matter what the scale as long as the accepted para-
digm continues to produce results.

Another concern with respect to the use of math models is that
they are incomplete, but models by their very nature are incom-
plete, otherwise they would not be models. This is a point that is
lost on many who expect the idealism of the model to shape reality
(and precision and generality) rather than the data (of any type)
driving the mode of the model. In other words, it is the problem
that is being investigated that defines the nature of the model being
used and not the other way around.



Harper / The Utility of Simple Math Models 43

GOOD SCIENCE WITHOUT MATH

Good science of any kind depends on two conditions, that the hy-
potheses that are constructed are testable, and, in terms of potential
falsification, that there is reasonable evidence available with which
to test the hypotheses under scrutiny. Neither of these conditions
either implicitly or explicitly requires a mathematical framework.
Consider the work of Charles Darwin, particularly his theory on
the mechanism of natural selection. Verification, and therefore po-
tential falsification, depend first on understanding what the theory
implies (Ghiselin 1969). Direct observation of the process of natu-
ral selection at least during the latter part of the Nineteenth Century
was not, as it is now, a possibility; however, Darwin was able to
verify the process of natural selection by implication. ‘A theory is
refutable, hence scientific, if it is possible to give even one con-
ceivable state of affairs incompatible with its truth. Such conditions
were specified by Darwin himself, who observed that the existence
of an organ in one species, solely “for” the benefit of another spe-
cies, would be totally destructive of his theory. That such an adap-
tation has never been found is a most compelling argument for
natural selection’ (Ghiselin 1969). Darwin, as quoted in Ghiselin
(1969), stated more generally, ‘The line of argument often pursued
throughout my theory is to establish a point as a probability by in-
duction, and to apply it as hypothesis to other points, and see
whether it will solve them’. 

Darwin's approach was entirely appropriate for a historical
science. The degree of complexity of generalization and the con-
ditional reasoning characteristic of historical sciences are unfa-
miliar to the experimentalist, but lack of familiarity is not the
cause for exclusion from the domain of science. Historical argu-
ments require multiple lines of supporting evidence, no single
line of which is (usually) strong enough to verify or refute, but
please note that neither the nature of the lines of evidence nor the
structure of the hypothesis itself (necessarily) require framing in
the language of mathematics. Good science by its nature is nei-
ther mathematical nor amathematical, but is a process by which,
using any intellectual tools available, problems relating to the
physical world may be investigated.
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GOOD SCIENCE WITH MATH

Darwin, Wallace, and a few others put the study of evolution on
a firm scientific basis and did so without the benefit of any rigor-
ous mathematical framework. However, a cursory look at the per-
tinent literature of evolutionary biology reveals that it is replete
with mathematics. The biology of populations, functional mor-
phology, ethology, and numerous other sub-disciplines are all to
some extent underwritten by mathematics. The question is, What
benefits did the application of math to the study of evolution bring
with it, and what lessons can the historical sciences learn from the
infusion of math into the evolutionary sciences?

In the early years of the Twentieth Century there was a great hue
and cry in the biological community regarding whether or not evo-
lutionary change was continuous or discontinuous. Mendelian ge-
netics had taken root, and one school of thought suggested, because
of the discontinuity of phenotypes, that evolutionary change was
also discontinuous, while the unrepentant Darwinists argued that
change was continuous. A synthesis was arrived at that involved the
wedding of several different studies – in particular, the establishment
of the Hardy-Weinberg equilibrium, studies of both selection and in-
breeding done primarily by R. A. Fisher, J. B. S. Haldane, and Sewall
Wright, and biometric studies – all mathematically based, showing
quite clearly that changes in rates of change, population size, and
the like could account for the full range of evolutionary phenomena
apparent at the time.

Where does this leave us with respect to the study of history?
There is no equivalent underlying mechanism in the historical sci-
ences like Mendelian genetics, no Darwinesque theory of historical
change, and consequently no hue and cry regarding mode of his-
torical change, although social and historical scientists do hue and
cry a great deal about other problems, but there are nascent areas of
the social and historical sciences that employ a mathematical
framework for some of their research. Historical demography has
been mentioned before. The not-so-nascent area of ecological
mathematics, particularly as applied by Peter Turchin (2003), has
pertinence for the study of warfare and societal collapse, and most
recently Korotayev et al. (2006) have employed a mathematical
approach to investigate the broad trends in historical demography
which underpin the notion of a world system. Simply by dint of the
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expansion of knowledge in these and other areas, by the discovery
of new problems, the application of mathematics to (some of) these
problems becomes inevitable. 

HISTORY AS SCIENCE
The two previous sections of this paper suggest that the nature of
the problem being investigated and the available intellectual tools
determine the approach to the solution of the problem. Whether
mathematics is used either directly or in developing a context in
which the problem becomes recognizable is itself a matter of con-
text and focus of the problem. However, do the problems of his-
tory, at least some of them, fall within the domain of science?
Clearly, if testable hypotheses can be constructed and then tested
with respect to historical problems, then those problems can be in-
vestigated scientifically, and, very definitely then, there are areas
of history that fall within the domain of science. This paper now
turns to a set of historical problems that can be investigated using
math models. The study by Frank and Thompson (2005) on the
economic expansions and contractions during the Chalco-
lithic/Bronze Age is used as a context for the application of
mathematics to historical problems. 

MATHEMATICAL MODELS
Frank and Thompson (2005) presented data to suggest the exis-
tence of a world system during the Chalcolithic and Bronze Ages.
Stating the hypothesis implicit in this paper in an ‘if-then’ form
gives: if there is apparent synchrony in the pattern in which Bronze
Age and Chalcolithic polities contracted and expanded over ap-
proximately three thousand years, then these synchronous fluctua-
tions imply the existence of a world system during this period of
time. But, how might the tools of mathematics be used to under-
stand and investigate this hypothesis?

Quantifying hypotheses such as the one above may seem to be a
difficult task, but Frank and Thompson present their data in an easily
modifiable way. The data given in Tables 2 and 3 of their paper con-
sist of the three thousand years under study listed incrementally in
century units and, per century and per region, designations of C for
economic contraction, E for expansion, and Unclear and Mixed for
equivocal data are noted. As a quantitative first approximation every
E was assigned a value of +1, and every C was assigned 
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a value of –1. Unclear and Mixed designations and periods for which
there were no data were given intermediate values dependent upon
the time span over which these designation applied, e. g. if there
were three data points missing between +1 and +2, then +1.25,
+1.50, and +1.75 were used as surrogate values. The value of each
region was then plotted in an accumulative fashion per century for
the duration of the study (see Fig. 1).

When all the regions in each of the tables are plotted on the
same axes it can be seen that there is significant synchrony among
the polities of the Middle East. There are also some interesting as-
pects of this graph not apparent in the original data set. First, Egypt
and the Gulf exhibit significantly longer periods of growth than do
any of the other polities represented. This may be due to the rela-
tive isolation of both areas from the rest of the economically more
interdependent polities. During the period from the end of the
Early Bronze Age to the end of the Late Bronze Age there is also
pronounced synchrony between Egypt, Syria/Levant, the Gulf re-
gion, and Iran. Second, while synchrony is apparent among the re-
gions represented, there is not complete synchrony. Please note the
following periods of asynchrony between certain polities: (a) After
2300 BCE the region, Syria/Levant, increases as Palestine de-
creases, and Palestine exhibits a series of centuries of sequential
contraction through 1900 BCE before a slight positive trend toward
the end of the Late Bronze Age; (b) From 2900 BCE to 2300 BCE,
Syria/Levant increases while Iran decreases; and (c) From 1600
BCE to 1300 BCE Mesopotamia shows a decline while Iran exhib-
its a positive trend. However, at the times of the asynchronies rep-
resented on the graph, what events were occurring and what was
their relationship to the asynchrony in question? With respect
to Syria/Levant and Palestine, geographic neighbors, economic
competition should be considered as a potential cause. Since Iran
and Syria/Levant are also geographic neighbors, as Mesopotamia
and Iran are, economic competition may again play a significant
role. Finally, a note should be made of the ultimate negative syn-
chrony, the Late Bronze Age collapse. It is clearly represented on
the graph and of definitely regional proportion. All the polities of
the region exhibited decline approximately at this time, although
the time of actual time of decline is not the same for all
regions. Egypt actually shows a decline beginning sometime around
1700 BCE, far in advance of the accepted time of the 
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demise of the Late Bronze Age. However, excluding Egypt, Meso-
potamia and the Gulf show the latest initiation of decline, 1200
BCE, while Iran, Anatolia, Palestine, and Syria/Levant begin their
decline at 1300 BCE. In light of the fact that most scholars suggest
that the Late Bronze Age Collapse began in the western Aegean,
the sequence of initiations of the event as represented graphically is
consistent with the evidence. Such aggregate behavior certainly
implies the existence of a world, or at least regional, system.

But what of the neighboring and not-so-neighboring areas to
the regions identified previously in Fig. 1? Is their behavior also
indicative of the existence of a world system? Are the economic
fluctuations evident in the regions of Fig. 1 also influential to the
periphery of these regions? As can be seen from the second graph
(Fig. 2) Western Greece, the Central Mediterranean, and the Ae-
gean exhibit similar trends both among themselves and in tandem
with areas represented by the previous graph, while the eastern
Mediterranean, Central Europe also exhibit synchrony, but with an
almost opposite phase to that of the first mentioned regions (com-
pare Fig. 3 with Fig. 4). Note also from Fig. 2 that distant China
shows some similarity with respect to the collapse associated with
the Middle Bronze Age. As expected, all regions show a decline at
the end of the Late Bronze Age and, with the exception of the
Central Mediterranean, the Aegean/Indus, and Asia, begin their fi-
nal decline between 1600 BCE and 1300 BCE.

While the individual behavior of various Bronze Age regions
exhibit interesting behavior with respect to analysis and support for
the existence of a world system, investigating the collective be-
havior of each data set, specifically the eastern Mediterranean and
what is labeled ‘the rest of Bronze Age Afro-Asia’ (Frank and
Thompson 2005), should also prove useful. Here the data per cen-
tury are simply summed and then plotted over the course of the
study period, 4000 BCE to 1000 BCE. In Fig. 5, 6, and 7 the data
reveal quite clearly the broad trends of the system as a whole.
There are several aspects of this representation worth noting. First,
this model represents three distinct and abrupt collapses, each one
punctuating the final phase of a section of the Bronze Age, the ini-
tial one occurring for 2300 BCE to 2100 BCE, the second from
1600 BCE to 1500 BCE, and the third spanning the period from
1300 BCE to 1000 BCE. Second, excluding these collapses, 
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there is relative stability of the entire region over most of the time
period represented. Specifically, those periods of stability include
1400 years in the Early Bronze Age, 300 years in the Middle
Bronze Age, and 200 years during the Late Bronze Age. Using a
system of representation that admittedly has low resolving power,
the aforementioned stability amounts to approximately 63 % of the
period under consideration, and, if the initial 300 years of the study
are excluded, the relative percentage increases to just over 70 %.
This seems to indicate significant stability within the system as a
whole. Third, the recovery from the first two collapses was rela-
tively rapid, within a period of 200 years, again suggesting signifi-
cant stability of the system. If both sets of data are combined (see
Fig. 7), the same general trends are apparent.

Are there ways that these graphical models can be improved
upon? Specifically, can the resolving power, i. e. the precision, of
these graphs be improved, and, if so, at the expense of which other
modeling limits, reality or generality? I propose two possible im-
provements. The precision of the model might be improved by
weighting the +/– system by the relative areas occupied by each
polity or by the available arable land or by annual rainfall. This has
not been done yet. The second possible improvement involves
curve-fitting. The data themselves represent economic fluctuations
over 3000 years, mostly dampened, and one possibility is to use
Fourier analysis to generate a best-fit equation.

An FFT (Fast Fourier Transform) analysis was done on the
data represented in Figures 5, 6, and 7 producing equations of the
form:

E = Asin[(2π/B)(T – C)] + Dsin[(2π/E)(T – F)],
where T = time and A, B, C, D, E, and F are fitted constants.
The graphs of these curves are shown in Figures 9, 10, and 11.
Note that all three graphs do not unexpectedly share similar shapes,
however also note that both visually and statistically the fits of the
curves to the data leave something to be desired. The RMS for
each is quite large, and this is due to the fact that only thirty points
were used in generating the curve. While the gaps between data
points could have been filled in with logically fabricated points to
improve the fit of the curve to the data, sample models a la Boyd
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and Richerson (2005), apparent logic and actual historical trends
are not necessarily consonant, so the curves have been left in their
original form.

What do these models, even though crude approximations, re-
veal about the trends in the Chalcolithic/Bronze Age? The eco-
nomic fluctuations of this time appear more regular or more peri-
odic when represented by this type of curve fitting.

Casual observation of the last graph reveals that the world sys-
tem was greatly influenced by the three collapses and two smaller
cyclic fluctuations during the Bronze Age, the last of these clearly
having the most pronounced impact of the three.
In a relatively recent paper, ‘A Simple Model of Recovery Dy-
namics after Mass Extinction’ (Solé et al. 2001), Richard Solé and
coworkers propose a simple mathematical model to investigate the
recovery from mass extinction which may have some pertinence
for understanding the pattern of recovery from the systems col-
lapses apparent during the course of the Bronze Age. Their model
is a modification of the standard logistic equation and is as follows:
dS/dt = ψSβ(1 – S), in which S represents species number, ψ equals
rate of increase, and the exponent, β, represents the degree of inter-
action between species. If we in turn modify the logistic model to
let S represent the magnitude of the global economic condition as
represented in the previous graphs, to let ψ represent the averaged
rate of increase between a trough and a peak (computed by divid-
ing the difference between these two values by the time span over
which the change occurred) and allow β ≥ 1 and to represent sys-
tem connectedness, then using a STELLA model of the differential
equation above (see Fig. 12), the appropriate value of β can be
found by trial and error. Please note here that Solé et al. (2001) use
an analytical approach, but restrict their analysis to whole number
values of β. (It is also important to recognize that the Solé equation
is not unlike the model that Korotayev et al. (2006) use to model
hyperbolic world population growth. In fact, it is a more general
case of the equation: dN/dt = a(bK – N)N, where β is restricted to
2.) In this investigation, because the STELLA program lends more
flexibility by allowing for all real values of β as a consequence of
its number grinding capabilities, greater resolution and conse-
quently greater fit of the model to a specific circumstance, i. e. the
three episodes of collapse, can be achieved. Generality is being
sacrificed for the sake of reality and precision.

Taken in sequence, each upward sweep of the Chalcolithic
Bronze Age curve is followed by a trough, and there are four such
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positive slopes to consider. The first occurred from 3800 BCE to
3600 BCE, has an average rate of increase of .02 yr-1, a time span
of 200 yrs, and, when compared to the base of the lowest trough to
the peak at 3600 BCE, has a starting value, So, of .7333 when all
values are scaled to M = 1, where M is the given peak of the recov-
ery curve being investigated. When these values are used to run the
program, a beta value of 1 is consonant with these conditions. Us-
ing values of ψ = .0086, a time period of 600 years, and So = .6842,
the best fitting beta value is 1.7. For the third recovery ψ = .0367,
the time period is 300 years, and So = .2667, yielding β = 2.6. Fi-
nally, β = 3.3 for the conditions: ψ = .055,
So = .3889, and T = 200 yrs.

The trend of increasing β during the course of the three thou-
sand years represented in the Frank and Thompson (2005) study
bears some consideration. It is obvious that with each preceding
collapse the recovery involved an increase in complexity with re-
spect to the connectedness of the world system. In fact,
a linear regression of β against the difference in economic position
for the world system at the beginning of each recovery phase with
respect to the peak of that phase yields r2 = .9154, a strong positive
relationship (but with an admittedly small sample number of 4)
Further, if β is plotted against accumulated time of occurrence
from the beginning of the first ‘recovery’, i. e. 3800 BCE, r2 =
.9640, a stronger correlation possibly implying some systems level
learning. Why might this be so? Why wouldn't the system simply
recover to its previous level of connectedness? There are a number
of possibilities. First, administrative efficiency may have evolved
to become more efficient. For instance, writing appears sometime
after 3400 BCE and could potentially be associated with an im-
provement in record keeping, overall polity efficiency, and conse-
quently may have permitted greater connectedness within the de-
veloping world system at that time. Technological innovation may
also have contributed to the rapid rise of the last two recoveries,
however, there are other possibilities. Perhaps the cause is cur-
rently beyond the resolution of study, or perhaps the use of already
existent technologies in novel ways may have contributed to these
apparent system recoveries. With the last two periods of recovery
not only is connectedness increased but is so over
a shorter period of time. The details of the cause-and-effect rela-
tionships behind these trends are left to the ancient historian for
analysis and resolution.
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Fig. 1. Graph of Mesopotamia (diamonds), Iran (squares), Anatolia (tri-
angles), Egypt (light x's), Palestine (dark ж's), Syria/Levant (hexagons), and
the Gulf (crosses). There are two groupings apparent, Egypt, the Gulf, and
Syria/Levant, and Mesopotamia, Iran, Anatolia, and Palestine. The former
three show an increase in the economic status before the terminal collapse,
and the latter four remain depressed from about 1700 onward.

Fig. 2. Graph of the economic fluctuations of the areas adjacent to the
eastern Mediterranean region represented in Fig. 1 including the Ae-
gean/Indus (diamonds), Eastern Mediterranean (squares), Western Greece
(triangles), Central Mediterranean (light x's), Central Europe (dark ж's),
Asia (polygons), Steppe (hatches), and China (dark rectangles). Note that all
regions exhibit a down turn toward the end of the Bronze Age.
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Fig. 3. Graph of the economic fluctuations of Western Greece (squares)
and the Aegean/Indus (diamonds). Note the synchrony from 1000 to 2400

Fig. 4. Graph of the economic fluctuations of the Eastern Mediterranean and
Central Europe. Note the synchrony between 700 and 2500
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Fig. 5. This graph represents a summation of all the data per century for
the regions represented in Figures 1 and 2. Note the significant troughs at
1900, 2600, and 3000 years.

Fig. 6. This graph represents the summation of economic changes per
century through the Bronze Age for the regions represented in Fig. 1. Note
the troughs at 1900, 2500, and 3000 years. 
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Fig. 7. This graph represents the summation of economic contractions
and expansions for all the regions represented in Table 3 of Frank and
Thompson (2005). The troughs at 1900, 24–2500, and 2900 are an apparent
match with the form of the graphs of both Fig. 1 of this paper and a summa-
tion of Fig. 1 and Fig. 2. The trough between 600 and 900 is interesting, be-
cause it is not matched by a similar down turn in Figure 6.

Fig. 8. This graph represents an FFT fit to the data of Fig. 6 and includes
all the data for Mesopotamia, Iran, etc. The form of this graph is similar to
that of Fig. 10 and clearly shows the three distinctive troughs at 1900, 2400,
and 3000. These correspond to 2200 BCE, 1650 BCE, and 1300 BCE. The
specific equation for the imposed curve is:

E = -2.01sin[(2�/567)(T – 604)] + .073sin[(2�/400)(T + 154)], 
where E represents the relative economic status of the world system,
T represents time, and the numerical constants are as given in the dialogue
box in the graph.
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Fig. 9. The graph above represents an FFT fit of the data from Figure 7
which represents the Indus/Aegean region et al. The form of the graph is a
relatively close fit to the actual data. However, the Middle Bronze Age col-
lapse, on this graph falling between 2200 and 2600, is represented by a barely
perceptible trough at approximately 2300. The specific equation for the im-
posed curve is:

E = -1.41sin[(sin2�/1129)(T – 541)] + .494sin[(2�/316)(T – 142/)],
where the symbols are as defined in Fig. 8.

Fig. 10. The graph above represents an FFT fit of the data represented in
Figure 5. Note that the events terminating the Early, Middle, and Late
Bronze Ages are reasonably faithfully represented by the model. The specific
equation for the imposed curve is:

E = -3.03sin[(2�/1050)(T – 621)] + 3.37sin[(2�/550)(T + 176)],
where the symbols are as in Fig. 8.

  ■ Prediction
  ▲ Data
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