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ABSTRACT 

The discussion about the Malthusian character of pre-industrial 
economies that has arisen in the recent years extensively uses sim-
ple mathematical models. This article analyzes some of these mod-
els to determine their conformity with Malthusian postulates.  
The author suggests two models that are more adequate for the 
description of the Malthusian patterns. 

Until recently, most economic historians were inclined to think 
that the medieval economies in Eurasia had a Malthusian nature 
(Allen 2008: 951). However, following the publication of Lee and 
Anderson's work (Lee and Anderson 2002), many came to dispute 
this opinion. A discussion has arisen about how the available data 
confirm the Malthusian relationship between demographic dynam-
ics and consumption (i.e., real wages). This discussion has largely 
involved simple mathematical models of the Malthusian economy. 

In 1980, Lee published the first and most popular of these 
models. This model describes the relationship between the real 
wage, wt (consumption), and labor resources, Nt (population), using 
the following equation: 
                                   wt  = exp( μ + ρt + εt) Nt

-η .                                        (1) 

Or, in the logarithmic form: 
ln wt = μ + ρt – η ln Nt + εt .                           (2) 

Here, t is time; μ, ρ, η are some non-negative constants; and εt 
is a variable that takes into account the climatic effect and other ex-
ogenous parameters. The factor ρ describes the capital increase and 
technological advances, thus the Malthusian economy features ρ = 0.  
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If we take into account that in the ideal case εt = 0, the model can be 
expressed with quite a simple equation: wt = С Nt

-η, where С is a cer-
tain constant. The drawbacks of this equation are evident: a small 
population Nt results in a consumption rate close to infinity, while 
in a large population the consumption becomes too small to ensure 
subsistence. Besides, this equation only shows the relationship be-
tween population and consumption. The model contains no feed-
back to demonstrate in what way the consumption influences popu-
lation growth. 

Wood (1998) suggests a feedback option for which he derives 
an equation basing on the same equation (1) as Lee, but formulates 
it as follows: 

                               wt = θ (St/Nt)
 η  .                                             (1a) 

Here, θ is the minimum per capita consumption rate, and St is 
the maximum population that can subsist in the given territory 
when the consumption equals θ. St can grow with technological 
advances, but the Malthusian case features a constant St, St = S0. 
Wood believes that the birth rate bt and death rate dt can be de-
scribed with the following equations: 

bt = β0 + β1 ln wt + β2 dt                                           (3) 
dt = δ0 + δ1 ln wt + δ2 bt                                           (4) 

where β0 , β1 , β2, δ0, δ1, and δ2 are certain constants. Thus, the 
equation below describes population growth: 

dNt /dt = (bt – dt)Nt                                           (5) 
Deriving bt and dt from the system of Equations (3)–(4) and in-

serting them into (5) yields: 
dNt /dt = (bt – dt)Nt = (с0 +с1 ln wt )Nt 

where с0 and с1 are certain constants. Substituting equation (1a) 
here produces: 

dNt /dt = (с2 + с3 ln Nt)Nt                                            (6) 
where с2 and с3 are certain constants. The differential equation (6) 
has the time-independent solution Nt = N0 = exp(–с2/с3); its chart 
will be a horizontal line. According to the theorem of the unique 
existence of the solution, no other solutions (integral curves) may 
cross this horizontal line. The derivative dNt /dt is positive below 
this line, in the area 0 < Nt < N0; the solutions monotonically in-
crease and the integral curves approximate the horizontal line.  
The derivative dNt /dt is negative above this line; the solutions 
monotonically decrease and the integral curves approximate  



Social Evolution & History / March 2014 174 

the horizontal line from above. Finally, the solutions cannot oscil-
late: the population cannot first feature growth and then loss due to 
‘the Malthusian crises’. Wood justifies this behavior of his model 
stating that the Malthusian crises ‘are not a necessary feature of Mal-
thusian systems… This conclusion is contrary to the belief of many 
economic historians (e.g., Le Roy Ladurie 1974: passim; Postan 
and Hatcher 1985: 69) though not to anything that Malthus him-
self ever wrote’ (Wood 1998: 110). 

However, Malthus did write about population loss and depopu-
lation:  

The power of population is so superior to the power of the 
earth to produce subsistence for man that premature death 
must in some shape or other visit the human race. The vices 
of mankind are active and able ministers of depopulation. 
They are the precursors in the great army of destruction, and 
often finish the dreadful work themselves. But should they 
fail in this war of extermination, sickly seasons, epidemics, 
pestilence, and plague advance in terrific array, and sweep 
off their thousands and tens of thousands. Should success be 
still incomplete, gigantic inevitable famine stalks in the rear, 
and with one mighty blow levels the population with the food 
of the world (Malthus 1798: 61). 

Wood's model does not, therefore, describe the population dy-
namics envisioned by Malthus himself. Nevertheless, it is used in 
many studies devoted to the analysis of the Malthusian economy in 
traditional societies. 

Sometimes an iterative version of this model is used, implying 
calculations on an annual basis. Equation (1a) in the version put 
forth by Møller and Sharp (2009) has logarithmic form: 

ln wt = c0 – c1 ln Nt + ln A                        (2a) 
Birth and death rates are calculated from the simplified equa-

tions: 
   bt = a0 + a1 ln wt                                                  (3a) 
   dt = a2 – a3 ln wt                                                   (4a) 

The population Nt is related to the population Nt-1 in the previ-
ous year through the following relationship: 

  ln Nt  = ln Nt-1 +bt-1 – dt-1                                           (7) 
here, A, c0, c1 , a0 … a3 are certain constants. Inserting (3a) and (4a) 
into (7) gives: 
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ln Nt = ln Nt–1 + (a1 + a3 ) ln Wt–1 + a0 – a2 =  
= ln Nt-1 + (a1 + a3)(c0 – c1 ln Nt-1 + ln A) + a0 – a2 = u ln Nt-1 + ln v 

where u and v are certain constants. The resulting equation is: 
Nt = v(Nt-1 )

u                                      (8) 
This equation generates a series of population values. If the 

population at the initial moment equals a million (i.e., N1 =1), then 
N2 = v, N3 equals v raised to a power of 1+u; N3 equals to v raised 
to a power of 1 + u + u2, etc. If ׀u1 < ׀, then Nt → ∞, which is 
impossible under the condition of limited resources in the 
Malthusian theory. If 0 < u < 1, then Nt monotonically tends to a finite 
bound. Finally, the case –1 < u <0 produces a very specific series 
in which the population increases in even years and decreases in 
odd years (or vice versa). Thus, the Møller-Sharp model has the 
same drawback as Wood's initial model: it cannot describe long-
term population oscillations. 

Another iterative version of the model is the one developed by 
Ashraf and Galor (2011). Beginning with equation (1a), the authors 
of this model take into consideration the number of adults and 
children, and optimize expenses. They, nevertheless, ultimately 
come to the same equation (8). 

One more version of Wood's model is that of Voigtlander and 
Voth (2009). They use equation (1a), but replace equations (3) and 
(4) with (3a) and (4a): 

   bt = b0 (wt / θ)m                                                            (3a) 
   dt =d0 (wt / θ)n                                                              (4a) 

where b0 and d0 are certain constants. Inserting (1a) into equation 
(5) yields: 

dNt /dt = (bt – dt)Nt = (b0(S0/Nt)
 ηm – d0(S0/Nt)

ηn)Nt = 
= q(p – Nt 

η(m–n)) Nt
 1-ηm                                         (6a) 

where p and q are certain constants. The differential equation (6a) 
has the time-independent solution Nt = N0 = p 1/η(m – n), which repre-
sents a horizontal line. As with the above model, the solution 
curves that are beneath this line monotonically increase and those 
lying above the line – monotonically decrease. Thus, this model 
has the same limitation as Wood's model and its other derivatives: 
it does not offer oscillating solutions. 

Brander and Taylor (1998) have suggested another popular 
model. This model analyzes some abstract renewable resource con-
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sumed in the course of human activities. For example, it might be 
forest resources or soil yield. St is the available amount of this re-
source (in year t), and K denotes its reserve in nature. The equation 
for consumption of this resource is as follows: 

  dSt /dt = rSt (1-St /K) – uStNt                                             (8) 
where r and u are certain constants. The first term on the right side 
describes the process of natural resource renewal; the second term 
describes resource depletion owing to economic activity. The popu-
lation number is given by the following equation: 

  dNt /dt = ( d + v S t )Nt                                                      (9) 
where d and v are constants, and d < 0 in this case. This equation 
shows that natural population growth depends on the availability of 
resource St. 

Brander and Taylor have shown that the system of equations 
(8)–(9) has oscillating solutions: when the resource is abundant the 
population grows, when it is exhausted the population decreases 
until the resource is renewed. Brander and Taylor refer to their 
model as ‘Malthusian-Ricardian’. Initially, the model was intended 
to describe the economy of Easter Island, but afterwards it got 
wider application as a sufficiently general model of the Malthusian 
economy (e.g., Maxwell and Reuveny 2000; D'Alessandro 2007). 
It is essential to note, however, that resource St in the Brander–Taylor 
model is not the harvest gathered by farmers. According to Brander 
and Taylor, the crop is denoted by the term uStNt and it is deducted 
from the resource St. According to Szulga (2012), such a model 
describes a society of gatherers (or hunters) rather than an agrarian 
society. Meanwhile, Malthus mainly studied agricultural econo-
mies. Thus, Brander-Taylor model cannot be referred to as a ‘Mal-
thusian-Ricardian’ one. 

Up to this point, I have confined my discussion to the analysis 
of simple models of the Malthusian economy that consist of no 
more than two differential equations. Naturally, there exist more 
complicated models (e.g., Usher 1989; Komlos and Artzrouni 
1990; Chu and Lee 1994; Galor and Weil 2000; Lee and Tuljapur-
kar 2008) that allow for better behavioral freedom and offer oscil-
lating solutions, as well. Many such models have been constructed 
within the framework of cliodynamic research actively performed 
in Russia and the USA (e.g., Tsirel 2004; Korotayev, Malkov, and 
Khaltourina 2005, 2006; Korotayev, Malkov, and Grinin 2007; 
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Turchin 2007, 2009; Malkov 2009). However, almost all models 
described in literature have the same drawback: they contain uncer-
tain coefficients whose values are unknown and cannot be deter-
mined in principle. The more complicated is a model, the more 
uncertain coefficients it contains. Meanwhile, these coefficients 
determine the behavior of the model, and different coefficient val-
ues result in different population dynamics. Thus, an uncertainty 
originates: as coefficient values are unknown, it is also uncertain 
which of the possible behavioral variants corresponds to historical 
reality and which of them could not possibly be realized. 

In the remainder of this article, I would like to discuss two sim-
ple models that contain no uncertain parameters and, in my opinion, 
are sufficiently adequate for the description of the Malthusian popu-
lation dynamics. Within the first model, Nt is the population in the 
year t, as above; Kt is the grain stock after the harvest estimated 
in terms of minimum annual per caput grain consumption rates 
(rate of consumption is assumed about 240 kg); and r is the 
natality under favorable conditions. The area under cultivation 
and the harvest depend on the population, and with the population 
growth they tend to the constant determined by the maximum area 
under cultivation maintained by the agricultural community. We 
will consider that the harvest is determined by the equation Pt=aNt 

/(Nt+d), where a and d are certain constants. To describe the popu-
lation dynamics we use the standard logistic equation: 

  dNt /dt = rNt (1 – Nt / Kt)                            (10) 
Kt in this logistic equation denotes the carrying capacity (i.e., 

the maximum size of population that may live in this territory). In our 
case, this population size corresponds to the number of minimum 
annual consumption rates in storage. Annually, Nt consumption 
rates are consumed, and the stock growth will be equal to: 

 dKt /dt = Pt – Nt = aNt /(Nt+d) – Nt                             (11) 
Thus, we have the simplest system of two differential equations 

(10)–(11). This system has an equilibrium state, when the population 
and stock remain constant, namely, when K0 = = N0 = a – d. 

If N in the equation for dP/dN tends to 0, we will obtain the 
harvest a/d (number of consumption rates) gathered by one farmer in 
favorable conditions (when the population is small and he or she is 
able to cultivate the maximum area). Thus, the value q = a/d shows 
how many households one farming family can support. The history 
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of agricultural societies shows that q usually varies within the limits 
1.2 < q < 2. We can express a and d in terms of q and N0: 

d = N0 / (q – 1),  a = qN0 / (q – 1) 
N0 can be conventionally set equal to 1 and thus, there are two 

constants in this model, r and q, which have physical significance 
and vary within the known limits: 0.01 < r < 0.02, and 1.2 < q < 2.  
The common methods used for investigation of dynamic systems 
allow us to determine that system (10)–(11) describes dying oscil-
lations. The first oscillations can have different periods; however, 
when the curve approaches the equilibrium state, the period is 
close to: 

T = 2π / √(r – r/q – r2/4) 
The period T decreases when r and q increase, and increases, 

respectively, when these values decrease (Table 1 and Fig. 1). 
Table 1 

Period of oscillations with various r and q (in years) 

q\r 0.01 0.02 
1.2 154 110 
2.0 89 63 

Thus, the period of oscillations in this model is comparable to the 
duration of secular demographic cycles observed in the history of 
many states (Turchin and Nefedov 2009). 

 
Fig. 1. Example of calculations using the model (r = 0.01; p = 1.2) 

The dynamics of the agricultural population according to this 
model have an oscillating nature. In theory these oscillations die 
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out and the system tends to the equilibrium state, but various ran-
dom impacts and influences neglected herein (e.g., catastrophic 
crop failure) disturb the system equilibrium, after which there starts 
a new series of dying oscillations. The peculiar feature of the agri-
cultural society is that its economic dynamics substantially depend 
on such a random value as the crop yield. The random factors that 
impact such systems are generally assumed to be exogenous; how-
ever, the dependence on crop yield variations is an intrinsic, en-
dogenous feature of agricultural production. Therefore, one arrives 
at the conclusion that a special random value describing crop yield 
must be incorporated into the ideal model of the Malthusian cycle. 
This can be conveniently done within the iterative model where the 
calculations are made from year to year. 

For convenience, I consider production years to start with the 
harvest, not a specific calendar date. The population number Nt at 
the beginning of year t is expressed in terms of the number of 
households or families (conventionally assuming that a household 
contains five people). In theory (i.e., when there is enough land for 
cultivation), a farming household cultivates a standard parcel of land 
(e.g., a Middle Eastern ‘çiftlik’) and one can measure the maximum 
possible area of arable land in terms of standard parcels S. 
When the number of households Nt exceeds S, two families can 
live on some parcels. 

Let at represent the annual crop yield t, expressed in terms of 
minimum family grain consumption rates that can be gathered on 
a standard parcel. We will express the crop yield in the form at= a0 + 
+ dt, where a0 is the average crop yield, dt is a random value that 
accepts values from the segment (–а1, а1). The value а1 is less than 
a0 and the crop yield at varies within the interval of a0 – а1 to a0 + а1. 
With the units of measure that I have assumed, the harvest Yt (num-
ber of consumption rates) can be expressed in the following simple 
form: 

Yt = atNt  if  Nt  < S, and Yt = atS  if  Nt  > S. 
If there is a grain surplus in the year t, that is per-capita produc-

tion yt =Yt/Nt exceeds the ‘satisfactory consumption’ p1 (p1 > 1), then 
the farmers do not consume all produced grain, but store up the sur-
plus (for the sake of simplicity we will assume that they store half of 
the surplus). However, it is worth noting that, owing to the storage 
conditions, the household stock Zt cannot grow to infinity and is 
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limited by certain value Z0. If there are surpluses exceeding this 
value, they all are consumed. If the year is lean and the production 
yt falls below the level p1, the farmers take grain from the stock, 
increasing the consumption, if possible, up to the level p1. If the 
stock is not sufficient, it is consumed to the full. 

The population growth rate rt is determined as the ratio of the 
population Nt+1 in the following year to the population Nt in  
the previous year. The growth rate rt depends on the consumption pt. 
When the consumption is equal to the minimum normal rate (pt =1), 
the population remains constant (rt = 1). I designate the maximum 
natural growth r0, and the consumption rate needed to ensure it as p0. 
I believe that r0 = 1.02, that the maximum annual population 
growth is two per cent. When 1 < pt < p0, population growth is 
linearly dependent on consumption, and in the case when pt > p0, it 
does not increase (r = r0). For pt < 1, the dependence of rt on pt is 
taken as rt = pt (i.e., in case of crop failure the surviving population 
will be equal to the number of consumption rates and all people 
that do not have a sufficient annual food reserve will perish from 
starvation). Consequently, the population in the following year will 
be Nt+1 = rt Nt. 

Considering the typical case from the Middle East or Russia from 
the sixteenth to the eighteenth centuries, when every family could ob-
tain two minimal consumption rations from one standard parcel, one 
can assume a0 = 2 for the numerical experiment. The scatter of crop 
yield (ratio а1/a0) was large enough (e.g., it was about 60 per cent of 
average crop yield in Egypt). Hence, it appears that one can assume 
а1 = 1.2. As for the random value dt , it may be approximated us-
ing squared uniform distribution: if w is a value uniformly dis-
tributed over the segment (–1.1), then this random value can be 
taken as dt = а1 w

2 sign(w) (Nefedov and Turchin 2007). The maxi-
mum number of standard parcels S can be conventionally assumed 
to equal one million, and the maximum stock to equal ten-year 
ones (Z0 = 10). Here, I consider a case in which farmers call upon 
the experience gained by preceding generations and start laying the 
crop up in storage as soon as the per-capita production exceeds 
1.05 of the minimum level (p1 = 1.05). This calculation has an ide-
alized character, allowing one to assume N1 = 0.8 as the initial 
population value (in year t = 1). As the calculation results depend 
on a random value (i.e., crop yield), they can vary with each pro-
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gram run. Despite this variation, one can qualitatively observe a pat-
tern of demographic cycles that seems typical: population growth 
periods alternate with demographic catastrophes. The duration of 
this cycle is, as in the previous model, 80–150 years (Fig. 2). 

 
Fig. 2. Example of calculation using this model for r0 =1.02, p0 = 2,  

a0 = 2, а1=1.2, p1=1.05 

Naturally, this model describes just the basic mechanism of the 
demographic cycle omitting many details (e.g., the existence of the state 
and military elite, the emergence of large landowners). Such factors 
are taken into account in other models (e.g., Nefedov and Turchin 
2007) and the calculations made using these models show that the 
qualitative cyclic pattern changes insignificantly compared to the sug-
gested model. On the whole, it seems quite certain that the availability 
of grain stock in farms contributes to a long-term economic stabiliza-
tion. However, the population growth results in the stock depletion, 
and, sooner or later, major harvest failures provoke catastrophic 
starvations followed by events like epidemics, uprisings of starving 
people, and/or invasions by external enemies seeking to take ad-
vantage. As a result, the population size can decrease even by half 
and a new demographic cycle starts. While the model calculations 
suggest that this new cycle might start immediately after the catas-
trophe, in real life such crises as wars and uprisings have some in-
ertia and impede economic revival. In such cases, stabilization is 
delayed. 
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Finally, it is worth noting that after the publication of Wood's 
model economic historians came to consider the Malthusian 
economy as a system where the population size cannot exceed the 
carrying capacity and, consequently, the ‘Malthusian crisis’ is im-
possible. For example, Read and LeBlanc (2003: 59) suggest that 

… there is a standard model for the pattern of human popu-
lation growth and its relationship to carrying capacity (K), 
namely, that most of the time human populations have low 
to nonexistent rates of growth… The model is often implicit 
and may simply assert that, until recently, population sizes 
have always been well below K and growth rates very low. 

But Le Roy Ladurie, Postan, Hatcher, and many other eco-
nomic historians insist that ‘the Malthusian crises’ were quite 
common phenomena in lived history, a fact acknowledged by 
Wood himself. The models described in this article show that the 
inevitability of similar crises arises from the simple laws that rule 
the functioning of agrarian economies. 
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