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Abstract 
This paper presents a detailed description and explanation of a model of punc-
tuated growth as that pattern of growth is related to population size, carrying 
capacity, and level of technology. General limits to modeling are introduced to 
give context to the results of the model, and the model itself is a set of differen-
tial equations representing the relationships between the aforementioned vari-
ables. It is noted that the pattern of punctuated equilibrium, first introduced by 
Eldridge and Gould as it applies to speciation, occurs throughout natural pro-
cesses. A description of the construction of the model, an intuitive construction, 
is given, the model is then used to generate results consistent with the occur-
rence of both punctuation and stasis, and a simple mechanism is proposed to 
explain the interaction between population size, carrying capacity, and level of 
technology that would then produce the pattern of punctuation over time. Fi-
nally, further modifications of the model to give greater reality to the results 
are presented. 

Keywords: punctuated equilibrium, stasis, macropattern, complex system. 

Introduction 
It has been shown that the macropattern of urbanization over recorded history 
and in fact extending somewhat beyond that 5000 year threshold exhibits dis-
continuous or punctuated change (Harper 2017). Modeling such a process, es-
pecially if the models being constructed are mathematical in nature, is more 
difficult than modeling continuous processes and the results are potentially 
more tenuous. As a consequence, the modeler of non-continuous processes has 
to be every bit as sensitive to the limitations of modeling in general as does the 
modeler of continuous processes. 
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One time in a class discussion a student of mine blurted out, ‘You can't do 
that!’, referring to an equation I was introducing the class to. His energetic re-
buttal was based on the fact that the equation in question was an oversimplifica-
tion of what he perceived to be a very complex process. The equation in ques-
tion was the Verhulst/Logistic equation of limited population growth, and, yes, 
‘You can do that!’, but with an understanding of the limits of the model being 
used. In general terms, all models are wrong or more appropriately, incomplete, 
however, if they were not incomplete, they would not be models but, rather, the 
real thing; it is the nature of their incompleteness that is important to under-
stand. In one sense, models can be described as either too good to be true; the 
logistic equation fits here, or too true to be good; any explicitly narrow model 
tailored only to represent a very clearly defined process would fall into this 
category. More formally, it has been shown that models can be designed to 
meet any two of three conditions, that of being precise, being general, and be-
ing real (Levins 1968). Models can then be real and precise, the previous lim-
ited case, real and general, or general and precise, in other words, too good to 
be true… or real. A little reflection on any of the previous three pairs of condi-
tions should reveal why the third condition cannot be met by a model address-
ing the previous two. The model to be proposed here is certainly precise and it 
is hoped has general application, but it will not address any of the details of 
reality. This implies that the model is too good to be true, but it most certainly 
has heuristic worth and, as pointed out by Peter Turchin repeatedly1, the appli-
cation of mathematics to the processes of human history has both supplemen-
tary and complementary worth and also provides a very effective and formal 
tool of analysis and prediction. 

The pattern of punctuation identified within the macropattern of urbaniza-
tion is not unique to natural processes. The Eldridge and Gould paper (1972) 
represents a paradigm shift in the understanding of the mode of evolution. Evo-
lutionary change as represented in the fossil record was shown to be episodic in 
many instances, and their model of stasis punctuated by evolutionary change 
provides the basis for the interpretation of a similar pattern identified in urban 
evolution. Of specific interest here is the explanation of stasis as variation in 
the system, in their case, a biological species and in the case here the urbanized 
portion of the world-system population. While Eldridge and Gould also provid-
ed a mechanism for such punctuated change based on the theory of allopatric 
speciation, there is no default mechanism of urbanization that can be called on 
to provide an explanation of change in urbanization. However, the rudiments of 
a very general mechanism of punctuated change which can be applied to the 
historical pattern of urbanization will be presented below. 

                                                           
1 URL: http://peterturchin.com/cliodynamics/ 



An Equation-Based Systems Approach 202

While Eldridge and Gould established the reality of punctuated equilibrium 
in speciation, a more general process has since been presented by the late Per 
Bak (1996) and a number of his collaborators, in particular, Flyvbjerg et al. 
(1993), and their research should be mentioned here, as it is applicable to com-
plex systems in general. Basically, these researchers were able to show that a 
pattern of punctuated equilibrium in a simple computer-modeled system which 
is based on selective elimination and broad upgrade could also produce a punc-
tuated pattern akin to the pattern of punctuated equilibrium identified by El-
dridge and Gould.  This model is essentially agent-based as opposed to equa-
tion-based and does not consider specific parameters such as those to be ana-
lyzed by the equation-based model proposed here. 

There are three final points to be considered. First, is the level of model 
complexity used. It will be the intent of the modeling effort here to use as simple 
a model as will still yield functional results. Clearly, it is important to follow the 
admonition of Einstein and actually a host of others to be simple but not too sim-
ple. Then there is the reality of the status of scientific knowledge to consider.  
The vast majority of scientific knowledge is provisional knowledge, consistent 
with the evidence and models at hand but subject to adjustment and even rejec-
tion, as both the conceptual knowledge and data of (any given field of) science 
changes. Negative knowledge, what something is not then becomes a potential 
contributor to scientific advancement.  

The final point of consideration is the composition and structure of the 
model itself, specifically which parameters and their interactions are to be mo-
deled. The model presented here will consider three component parameters: 
population size, the carrying capacity for that population, and the level of tech-
nology accessible to the population. One of the purposes of the paper is to show 
the impact of reciprocal interaction between subcomponents of the total system 
population in the light of both the level of technology available and the carrying 
capacity that both limits and is altered by interactions with the other compo-
nents.  

The specific model being investigated here is as follows: 
dN1/dt = r1N1[K – (N1 + N2)],                                  (Eq. 1) 
dN2/dt = r2N2[K – (N1 + N2)],                                  (Eq. 2) 

r1 = r10 + aN2, 
r2 = r20 + bN1, 

dK/dt = (T – N)/K, and                                         (Eq. 3) 
dT/dt = T/[K – (N1 + N2)],                                      (Eq. 4) 

where N1 and N2 represent positively interacting populations, r1 and r2 repre-
sent the growth rates of the two populations, K is the carrying capacity, T rep-
resents the (relative) level of technological expertise of the associated popula-
tion sizes and carrying capacity, a and b are tuned constants. (It is presumed 
that the notation, dN/dt et al., is understood to represent the rate of change of 
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the variable in question over the change in time and that the equations are un-
derstood to be differential equations representing change in a given variable 
rather than the variable itself). In turn, the growth rates, r1 and r2, are a function 
of both a base rate of growth of their respective populations and also of positive 
feedback between the populations in this model. While systems of differential 
equations such as the one above are potentially solvable analytically, and in-
sight may also be gained graphically via phase plane analysis, this model was 
investigated using, STELLA, a software explicitly designed to analyze differen-
tial equations. 

The model was derived intuitively, and the motivation, explanation, and 
background for this intuition will now be given. The model was constructed 
keeping the following precepts in mind. First, the model was to be as simple as 
possible but still be functional. This is to say that it had to exhibit the character-
istics of the phenomenon being modeled but at the same time have the minimal 
complexity necessary for exhibiting those characteristics. Second, since the 
phenomenon being modeled was the punctuated growth of the macropattern of 
urbanization over time, the model had to exhibit both phases of punctuation and 
intervening phases of stasis. Finally, since it has been clearly demonstrated that 
human population growth is hyperbolic and not simply exponential, hyperbolic 
growth had to be the mode of positive change in the face of both carrying ca-
pacity and technological limitations. 

This last factor of hyperbolic growth will be considered first. In 1960 von 
Forester, Mora and Amiot were the first to demonstrate that human population 
growth was best modeled as a greater-than-exponential process. This was more 
lucidly and elegantly confirmed by the work of Korotayev, Malkov, and 
Khaltourina (2006) who showed that human population growth could be de-
scribed by the differential equation, dN/dt = aN2, having the solution, Nt =  
= C/(t0 – tn), where C is a fitted constant, t0 is the so called doomsday date, and 
tn is some time prior to doomsday. A possible mechanism was proposed by 
Harper (n.d.), in which a two-population system was analyzed with each popu-
lation contributing positively to the growth rate of the other population. It was 
then shown that the pattern of growth of such a system was greater-than-
exponential. This feature of the model is incorporated in the equations, r1 =  
= r10 + aN2 and r2 = r20 + bN1, representing the growth rates in the two-
population system being analyzed here. 

As this model has been analyzed numerically using the software program, 
STELLA, of which a flow chart and copy of the equations are included in an 
Appendix, the revealed aspects of punctuation and stasis, terms first coined by 
Eldridge and Gould (1972), emerged only as a result of running the simulation, 
i.e. punctuation and stasis are emergent phenomena occurring within the con-
straints of a limited range of variables. A priori, the aspects of punctuation and 
stasis were not predictable from analysis of the structure of the model. This has 
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significant implications with respect to the general nature of the model and the 
three key variables, N, K, and T, i.e. population size, carrying capacity, and 
technology. The specifics of these implications will be treated further on in this 
paper. It is also of interest that this model is relatively simple, yet produces  
the structured results that it does. 

With respect to the simplicity of the model, and excluding for the moment 
any further discussion of the embedded feature of hyperbolic growth, the model 
can be represented more generally by three equations: 

dN/dt = rN(K – N),                                            (Eq. 5) 
dK/dt = (T – N)/K, and                                         (Eq. 3) 

dT/dt = T/(K – N),                                            (Eq. 6) 
where all symbols are identified as before. This reduced model is given here to 
emphasize the generality of these relationships. In particular, it should be no-
ticed that the Eq. 6 focuses on two simple relationships, the difference between 
the magnitudes of technology and population, with technology as an upper limit 
to population, and the ratio of this difference to the magnitude of carrying ca-
pacity. This relationship implies that with increasing exploitation of technolo-
gy, carrying capacity is reduced, i.e. the numerator shrinks with respect to the 
denominator. In turn, Eq. 6 also a ratio, consists of the magnitude of technology 
in the numerator being divided by the difference between carrying capacity and 
population size. In this instance, as population approaches its limit as defined 
by K, the magnitude of this ratio increases. This implies that as resources be-
come scarce, improvements in technology will occur to (possibly) avert a crisis. 
These relationships, those of dK/dt and dT/dt, are stated as simply as possible 
with no other variables, no coefficients or exponents, to complicate interpreta-
tion of the behavior of the model. Also, Eq. 5 is a variant of the Ver-
hulst/logistic equation in its simplest form, and is meant simply as a place-
holder for the more elaborated form of population interaction given initially. 

It should also be noted that the actual model being presented here repre-
sents a two-population model, clearly a simplification that is on the face of it, 
unrealistic. Let me explain. Were the model to represent more subdivisions of 
the population, that would violate my first precept, that the model be as simple 
as possible. Given this, of what use is a model that is admittedly unrealistic? 
First of all, in one sense all models are unrealistic in that they are incomplete.  
If models were not incomplete, they would not be models, they would be the 
real thing, the reality that is being modeled. It is then not that any given model 
is incomplete, but rather the concern is in what way is a given model incom-
plete. Using the simple dichotomy, models are either too good to be true or too 
true to be good, the model presented in this paper falls into the latter category; 
it is too good to be true. Another way of stating the limits on the model is to use 
Levin's tripartite condition for functional models. Models have imposed on 
them the conditions of generality, reality, and precision, only two of which can 
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be met by any given model. So, if a model is general and precise, as the model 
presented in this paper is, then it cannot be real. 

The previous discussion may explain why an unrealistic model can still 
have worth, but it does not explain in any depth what that worth is. Being able 
to produce general, precise results without having those results necessarily be-
ing realistic seems tantamount to the physicist's wont to analyze imaginary ele-
phants sliding down frictionless planes. What can be learned from such an ex-
ercise? The answer, of course, is that the model has heuristic value, especially 
if the model can be shown to have universal value within, and this is not an 
oxymoronic statement, defined limits. In other words, if the triage of N, K, and 
T can be shown to have predictable behavior when interrelated in similar ways, 
this might or would imply that punctuation and stasis are expected properties of 
such systems. 

Thus, the model presented here is a model of punctuation and stasis, not 
the model of punctuation and stasis. Yes, it is meant to represent the general 
behavior of populations, and more specifically urban populations, in relation to 
both their collective carrying capacity and also to the level of technology that 
these populations can both produce and also be constrained by, but this model 
also clearly has limits as previously stated. The model of Flyvbjerg et al. (1993) 
is an agent based model that also exhibits punctuation and stasis and does so in 
a quest for a system-limiting level known as self-organized criticality. The mo-
del investigated here is equation based and exhibits some of the same behavior, 
however, it has not been extensively enough investigated to show that it does 
have some upper limit. For the moment then, let us assume that it does not. 
Does this imply that this system predicts that repeated phases of punctuation 
and stasis will go on ad nauseam into the future? Possibly, but please remember 
that the model is not realistic but it does have the qualities of generality with 
respect to behavior. Consequently, the most important result to keep in mind is 
that the model does exhibit punctuation and stasis and does so as emergent 
properties of the model system and it is hoped also of the world system as it is 
represented by changes in urbanization over time.  

Results 
In this section the model will be put through its paces, first to show that it does 
exhibit punctuation and stasis, and then to show that it does so over a range of 
variable magnitudes. When running this system of equations on STELLA, the 
time step used was, dt = 1. This is in keeping with the nature of the actual data 
used to analyze the macropattern of urbanization over time. This implies that 
the computer model jumps from time step 1 to time step 2 and so forth, while it 
is clearly recognized that no such time saltation occurs in reality; this is to say 
that changes in the magnitude of urban area size with respect to population may 
result is saltatory changes in magnitude, but that is not a consequence of a tem-
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poral saltation but rather the occurrence of a tipping point being exceed which 
in turn leads to a phase change in urban area magnitude, and in fact this is ex-
actly what would be expected in reality and does in fact occur in the program 
itself, but at a low temporal resolution.  

In Fig. 1 to follow population growth is the only variable represented and 
exhibits four abrupt changes in slope and four periods of stasis. When the plot 
of carrying capacity is added (see Fig. 2), this curve exhibits no abrupt changes 
in slope and no periods of stasis but does show changes in slope. However, 
when the plot of relative level of technology is included (see Fig. 3), it clearly 
exhibits both periods of stasis and also of punctuation of stasis. With regard to 
this system of equations then punctuated equilibrium is unquestionably an 
emergent phenomenon of the system. It will also be shown that the system is 
[relatively] sensitive to initial conditions, however, it appears not to be bounded 
and consequently will not exhibit chaotic behavior.  

 

Fig. 1. X-axis represents time. Y-axis represents population size in 
unspecified units  

Note: This graph and all other graphs were generated by the program STELLA. 
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Fig. 2. The axes are as in Fig. 1, but the magnitude of carrying ca-
pacity is also represented by the curve designated with the 
number 2 

 

Fig. 3. Axes are as in the previous two graphs, but a third curve has 
been added, one representing changes in technology over the 
same period of time represented by the curve 3 

If attention is now turned to the plots for the differential equations of the model, 
i.e. dN1/dt = r1N1[K – (N1 + N2)], dN2/dt = r2N2[K – (N1 + N2)], dK/dt =  
= (T – N)/K, and dT/dt = T/[K – (N1 + N2)], it can be seen that all four equa-
tions behave episodically. In Fig. 4 the rates of change of both populations 1 
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and 2 change simultaneously, and their magnitude reflects the pattern of total 
population size in all the phases of stasis represented in Figs 1, 2, and 3. It is 
also of note that these changes in population growth are not continuous, i.e. that 
growth rate above zero occurs briefly and is synchronous with periods or phas-
es of punctuation, as can be seen in Fig. 5.  

If we now consider the relationship between population change and carry-
ing capacity change in Fig. 6, it can be seen that each peak in population 
growth rate coincides with an abrupt change in slope of the graph of carrying 
capacity change. And in two out of four instances the population growth rate 
change, the first and last, the peaks coincide with points of abrupt change in 
carrying capacity change from positive to negative slope, and with regard to the 
middle two rate change peaks for population change the relationship is reversed 
so that the change in slope associated with carrying capacity is from negative to 
positive. One further observation, as the rate of change of both populations be-
comes negative, the rate of change of carrying capacity becomes positive (see  
Fig. 6). However, following the right-most peak of the population curves all 
curves exhibit steep negative slopes.  

When considering the relationship between the pattern of change for the 
populations of this model with respect to that of technology, it can be seen that 
each peak of population growth rate change coincides with either a peak in 
technology change or an abrupt change in slope from negative to more negative 
as in the case of the first synchronous population rate peak. In both cases the 
negative slopes of all peaks exactly coincide. 

 

Fig. 4. The X-axis represents relative time, while the Y-axis repre-
sents the magnitude of the change in the synergistically 
linked populations 1 and 2, numbered curves 1 and 2. It can 
be seen that the change in the differential equations repre-
senting these populations occurs episodically and simultane-
ously 
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Fig. 5. The X-axis represents unscaled time. The Y-axis represents 
the magnitude of change in both populations 1 and 2 (curves 
1 and 2), and the magnitude of their combined populations 
(curve 3). It can be seen that the peaks of each episode of 
rapid change in the differential equations for populations 1 
and 2 correspond to the beginning of each phase of punctua-
tion 

 

Fig. 6. The X-axis is as in previous graphs. The Y-axis is scaled to 
represent three sets of values, those of the rates of change of 
populations 1 and 2 and also of the carrying capacity 
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Fig. 7. X-axis as previously scaled. Y-axis scaled to represent the 
magnitude of change in both populations 1 and 2 and also 
that of technology, the latter being measured in unspecified 
units 

Turning briefly to the relationship between change in carrying capacity and 
change in technology as represented in Fig. 8, close inspection reveals that each 
peak in carrying capacity coincides with an abrupt change in slope in the rate  
of change in technology, either from a negative slope to zero slope or from less 
negative to more negative slope. Inspection of the right-most technology peak 
reveals a departure from this pattern. Here, while there is no peak in the carry-
ing capacity curve, an abrupt change in slope of this curve from less negative to 
more negative coincides with this technology curve peak, that is to say that 
from the point of this right-most technology curve peak onwards, both curves 
exhibit a steep negative trend terminating in a zero slope for both curves. How-
ever, following one time-step later each peak in both the rate of change in the 
populations and the rate of change in technology is a peak in the carrying ca-
pacity rate of change curve. These carrying capacity peaks are then followed by 
declines extending several time-steps, which in three of the four instances are 
then followed by further peaks in the rate of change of the carrying capacity. 
Note that the last peak in the rate of change in technology does not precede  
a further carrying capacity peak.  

Finally, if all four rates of change are considered together (see Fig. 9),  
a clear pattern emerges in which the peaks of both combined population change 
and change in technology are offset from those of carrying capacity. In each 
case in which the coincident peaks of population change and change in tech-
nology occur, the peak in carrying capacity follows one time-step later. This 
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description, however, is in no way meant to infer mechanism per se, and  
this will be dealt with in the following section.  

 

Fig. 8. The X-axis is as in the previous graphs. The Y-axis represents 
the magnitude of change in the differential equations repre-
senting carrying capacity, curve 1, and relative level of tech-
nology, curve 2. It is obvious that these curves exhibit abrupt 
changes 

 

Fig. 9. X-axis as previously scaled. Y-axis represents the scaled val-
ues for all four rates of change, those of both populations 
(curves 1 and 2), carrying capacity (curve 3), and technology 
(curve 4) 
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Implications of Results Generated by the Model 
What are the implications of this mathematical model of punctuated growth 
with respect to the macropattern of urbanization? In common parlance, what is 
it good for? At the outset of this paper I suggested that there are three precepts 
or conditions that the model should be designed to meet. Those conditions are: 
1) The model must be as simple as possible, yet yield significant results, i.e. in 
the initial wording, be functional; 2) The model has to exhibit both punctuated 
growth and stasis; 3) The growth phase of model behavior has to exhibit hyper-
bolic growth. Have those conditions been met? What does the model suggest 
about the interplay between the three major parameters of the model, popula-
tion size, carrying capacity, and technology? To what extent is this model a 
model of the growth behavior of complex systems in general? Finally, what 
adjustments and adaptations can be (and, perhaps, should be) made to improve 
the model for future application? 

Regarding the initial condition, that the level of simplicity the model has 
and its ability to be functional, while not all the evidence is in, in that the model 
has not been tested exhaustively, the model is certainly simple enough to con-
struct, to embed within the software used, simple enough at surface level to 
understand, and yet produces useful results. So, this first condition of simplicity 
with functionality seems to be met. The second condition, that of exhibiting the 
specific type of behavior, punctuation and stasis, that empirical evidence yields 
regarding macropattern changes in urbanization over time, this condition too 
has been met. However, the final condition of the model producing hyperbolic 
growth can only be inferred. Since the time step, dt, was set at dt = 1 and since 
the actual punctuated changes occur within that time step, it can only be in-
ferred that the rate of change is greater than exponential even though the 
change is quite rapid. So, until further research is done on model behavior, 
formally at least there is no confirmation that the third condition has been met. 

The diversity of graphical evidence presented in the Results section sug-
gests a potentially rich repertoire of model behavior. On initially running the 
model, the punctuated behavior of the model was completely unexpected and, 
at least with respect to what could be predicted by inspection of the model only, 
represents an emergent phenomenon. The major question to ask then is: What is 
the cause of this punctuated behavior? Does it occur over a wide range of val-
ues of the variables of the model? 

Addressing the first question, in Fig. 1 the evidence of punctuated popula-
tion growth is clear, and when Figs 2 and 3 are inspected, it is seen that while 
carrying capacity does not exhibit punctuated growth in sync with changes in 
population, the carrying capacity does exhibit synchronous changes in slope. 
Technology, on the other hand, does exhibit synchronous punctuated changes 
with population size. At the level of resolution of the three primary variables 
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there is then synchroneity of change, but there appears to be no immediate evi-
dence for the mechanism of this change. However, if the rates at which these 
changes occur is considered a potential solution becomes apparent. 

If Figs 4 and 5 are inspected, it will be seen that the rates of change of the 
interacting populations are in sync with the punctuated behavior of the total 
population, an unsurprising result. However, if these rates of change, i.e. the 
rates of change of populations 1 and 2, are compared with the rate of change of 
the carrying capacity, a different picture emerges. It can be seen in Fig. 6 that 
three of the four maxima for the population rates of change coincide with min-
ima for the rate of change of carrying capacity, while in Fig. 7 the rate of 
change of technology exhibits peaks which are synchronous with the last three 
population rate of change peaks and in which both technology and population 
rate of change exhibit reduction, i.e. a negative slope, after each popula- 
tion peak. In Fig. 8, however, which compares rates of change in technology 
and carrying capacity it can be seen that the peaks in carrying capacity precede 
those of the rate of change in technology, as to be predicted from the data of 
Figs 6 and 7. If attention is paid to the left hand side of the graph in Fig. 8, it is 
quite clear that carrying capacity rate of change exceeds that of technology for 
a significant period of time. In other words, the rate of change of carrying ca-
pacity exceeds that of both the total population and also technology prior to 
their own periodic local maxima. 

I have a simple mechanism to propose to explain the interactions between 
population, carrying capacity, and technology. Initially, carrying capacity must 
always exceed (in relative terms) both the rates of change of population and 
technology. In turn, this positive difference in carrying capacity rate of change 
provides (numerical) space for the subsequent increase in the rates of change of 
both total population and technology. Increasing the rates of change of total 
population and technology then reduces carrying capacity to a local minimum 
at the same time as total population and technology reach a local maxi- 
mum. Stasis is established when the rates of change for both total population 
and technology are maintained at zero. This is an admittedly Malthusian expla-
nation, and one that makes general sense in that both population growth and the 
rate of the exploitation of technology and therefore resources require an appro-
priate gap between those rates of change and that of the carrying capacity. 

The third question is much more difficult to address, and I will only allude 
to a possible outcome, which at this point in the development of the model is 
little more than a suggestion of the possibility of a general model of complex 
system growth. First, recall that Bak (1996) and Flyvbjerg et al. (1993) have 
already provided a model of such growth based on the concept of self-
organized criticality. What is being suggested here, however, is that in (rela-
tively) complex systems, and perhaps the term, complex adaptive systems, 
should be used, and even though it may appear that such systems are more 
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amenable to agent based modeling, that the interplay between the subparts of 
such a complex system produce thresholds above which the system can only 
arise when a key subcomponent exceeds some threshold value. In the case of 
the current system of equations, the rate of change of the carrying capacity has 
to reach some maximum prior to the system as a whole, i.e. the other two pa-
rameters, total population and carrying capacity, moving to the next threshold 
level. Thus, while punctuated growth is, I believe part-and-parcel of complex 
system behavior, it is very far from being demonstrated firmly, let alone prov-
en, that this mode of growth in fact is a general characteristic of complex sys-
tems. 

With regard to the implications of the model, this leaves only model im-
provements for consideration. Five areas needing improvement will be consid-
ered. If one considers Harper (2017), it will be clear that there are two obvious 
differences between the punctuated patterns actually exhibited by urbanization 
over time, first, that the phases of punctuation occur over several centuries, two 
at least in the case of the current phase of punctuation, and that the stasis of the 
actual world-system is relative in that there is oscillation about a mean. In order 
for the model to develop more explanatory power, it will have to account for 
these two characteristics of the system. This perhaps can be brought about by 
including appropriate coefficients and exponents, especially for the equations 
for both carrying capacity and technology. Also, it has not been firmly estab-
lished what the range of initial values is that will permit this particular system 
of equations to behave in a punctuated fashion. Finally, the system of equations 
analysed here does not directly represent urbanized populations, only popula-
tion magnitude in general. This needs to be changed. 

What has been presented here in this section then are a series of evalua-
tions of the worth or significance of the model of the punctuated growth of  
a complex system, one reflecting the behavior recognized in the macropattern 
of urbanization over time (Harper 2017). The model is also as referred to previ-
ously as what is hopefully only a shadow of its future self. However, this model 
does relate population, carrying capacity, and technology in such a way as to 
represent what can only be described as an emergent phenomenon, the punctu-
ated growth of a complex system.   
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Appendix 
The figure below represents the visual construction of the model presented in 
this paper in the language of a STELLA diagram. Note that the names of the 
various symbols do not explicitly match the variables of the differential equa-
tion form of the model. 
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The equations below represent the format of the mathematical operations done 
associated with each of the symbols in the flow chart representation in the 
mode of the STELLA software of the model presented in this paper. 

 
The table below represents all the data points generated through twenty-

seven generations in which the time step, dt, is one unit. 
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