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Abstract 

The Drake equation pertains to the essentially equilibrium situation in a popu-
lation of communicative civilizations of the Galaxy, but it does not describe 
dynamical processes which can occur in it. Both linear and non-linear dynam-
ical population analyses are built out and discussed instead of the Drake equa-
tion. 
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Introduction 
Communicative civilizations (CCs) are the ones which tend to send messages to 
other civilizations and are able to receive and analyze messages from other civili-
zations. The crucial question of the SETI problem is how far the nearest CC from 
us is. Its answer depends on the number of CCs existing in the Galaxy at present. 
Fig. 1 shows how the distance between the Sun and the nearest CC depends on 
the number of CCs in the Galaxy. The calculation was made by us by the Monte 
Carlo method with the use of a realistic model of the distribution of stars in the 
Galaxy (Allen 1973) and the actual location of the Sun in the Galaxy (8.5 kpc 
from the center of the Galaxy). 

The best known way to answer the question about the number of CCs is the 
formula by F. Drake 

LfffnfRN cilepC * ,                                      (Eq. 1) 
where R∗ is a star-formation rate in the Galaxy averaged with respect to all time 
of its existence, fp is the part of stars with planet systems, nе is the average 
number of planets in systems suitable for life, fl is the part of planet on which 
life did appear, fi is the part of planets on which intelligent forms of life devel-
oped, fc is the part of planets on which life reached the communicative phase, L 
is the average duration of the communicative phase. The Drake equation gives 
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the number of CCs only in a rather rough approximation. According to the for-
mula, NC does not depend on time. Meanwhile, it is evident that formerly there 
were no CCs in the Galaxy at all. Then there was a transition period when its 
number was increasing somehow. In fact, the Drake formula describes only the 
essentially stable situation, which can be very remote from the truth. 

 
Fig. 1. The expected distance to the nearest CC as a function of the 

number of CCs in the Galaxy (left panel) and the probability 
distribution of distances to the nearest CC for the case of  
NC = 10000 (right panel). The distribution function profile for 
other values of NC is analogous; only the most probable dis-
tance differs 

Source: author's calculations. 

It is necessary to modify the Drake formula to allow for the development times, 
the variability of star formation rate, etc. Our paper develops this approach both 
in linear and non-linear dynamical theory. 

Linear Population Analysis 

In the linear theory it is supposed that the CCs develop independently from 
each other and that they cannot affect the star formation rate and evolution of 
life on other planets in the Galaxy. The following model functions and parame-
ters are used in the linear theory. R(M,T) is the star formation rate as a function 
of star mass M and galactic time T. The star lifetime is determined by the sur-
vival probability LS(M,τ) of the star mass M on the Main Sequence at the mo-
ment τ reckoned from the moment of its birth. В(М,τ), determines the density of 
the probability that a CC appears in the time τ after formation of a star of the 
mass M. The function B(M,τ) is normalized by B(M,τ)dτ = (M), where (M) 
gives a probability that conditions suitable for origin of a CC near the star of 
the mass M will be implemented someday having infinitely long lifetime for the 
parent star. The duration of the communicative phase of CC evolution is deter-
mined by the function LC(M,ω) that gives the probability of maintenance of the 
communicative phase in the time ω after its origin. The population of stars is 
described by distribution nS(M,τ,T) specifying the number of stars by their mass 
M and age τ with the galactic time T. The population of CCs is described by 
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distribution nC(M,τ,ω,T) specifying the number of communicative civilizations 
of the age ω at the galactic time T which appeared near the star having the mass 
M and the age τ. The total number of civilizations NC is: 
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The complete system of equations together with margin conditions that de-
termines the distributions nS(M,τ,T) and nC(M,τ,ω,T) is 
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The definition of C in Eq. 6 is obvious from Eq. 3. The system (3–8) has exact 
solution for the density distribution of CCs as follows: 

.C S Cn (M,τ,ω,T)= R(M,T τ ω)L (M,τ+ω)B(M,τ)L (M,ω)       (Eq. 9) 
The obtained solution (9) together with Eq. 2 allows us to investigate  

a huge number of various tasks. It is worth to restrict this variety by some rea-
sonable limits. For this purpose, some simplifications will be used. We suppose 
additionally: the star formation rate may be factorized: R(M,T) = R∗(T)F(M), 
where the initial mass function F(M) is supposed to be independent of time; the 
star survival probability to be a step-like function: LS(M,) = [0(M) – ], 
where 0(M) is the lifetime of the star with mass M on the Main Sequence; the 
time of development before CC formation to be independent of the star mass 
M: B(M,) = (M)b() with  b()d = 1; the lifetime of CC does not depend on 
the star mass M: LC(M,) = LC(). Eq. 2 with using of Eq. 9 and the introduced 
simplified expressions for the model functions may be rewritten as 

max

0 0 0

,
ωT

C C

(M)
N = dMα(M)F(M) dτb(τ) dωR (T τ ω)L (ω)



          (Eq. 10) 

where ])(,min[)( 0max   MTM .  
The Drake equation (1) may be obtained from Eq. 10 with further simplifi-

cations: R∗=const, 0(M)  , time of development before CC formation is 
small. But we will investigate more realistic scenarios. 
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Fig. 2. Left panel: the initial spectrum of star masses (Meyer et al. 

1999). Right panel: The star lifetimes. The star mass is in the 
solar mass (Surdin 2001: 58). The quantity γ in the diagram 
of F(M) shows an index of the power function corresponding 
to different parts of the spectrum. 

 
Fig. 3. Left panel: star formation rate as a function of time. Right 

panel: the choice of probability of CC development times. 
Solid line represents the most probable case. Data points are 
from (Twarog 1980) and (Meusinger 1991). 

The initial spectrum of star masses according to (Meyer et al. 1999) and the 
relation between star lifetimes on the Main Sequence and mass approximated in 
(Surdin 2001: 58) were used in calculations. Fig. 2 shows corresponding func-
tions F(M) and τ0(M). For the star formation rate function R∗(T) in calculations 
we used averaged and interpolated data from the papers of (Twarog 1980) and 
(Meusinger 1991) (shown by the dotted line in Fig. 3, left panel). The relative 
rate data of Surdin (2001) and Twarog (1980) were normalized to obtain cor-
rect number of stars in the Galaxy at the present time. The linear function equal 
to zero at M = 0.5M, equal to 1 at M = 2M and α(M) = 1 at M > 2M was 
taken as the probability of realization of suitable conditions. The value 



Dynamical Generalizations of the Drake Equation 222 

α(M) = 1 for 2M was chosen rather arbitrarily and it does not restrict the gen-
erality due to linearity of the theory. With such choice of α(M) the average 
probability of implementation of suitable conditions with star masses from 
0.5M to 2M turns out to be about 0.02. For the distribution density of CC 
development times b(τ) we tested here three functions shown in Fig. 3, right 
panel. The distribution of durations of the communicative phase was taken in 
the form of the falling exponent LC() = exp(–/L0) with L0 = 1,000 years.  
The choice of L0 practically does not limit the generality of results (due to line-
arity). 

    
Fig. 4. Left panel: results of calculations within the framework of the 

simple linear theory corresponding to different distributions 
b() of CC development time (see Fig. 3). Right panel: the lin-
ear dynamics of the CC population at the origin of life in the 
Galaxy in the process of the self-consistent phase transition 
[6] in six billion years after the beginning of the formation of 
the galactic disk and its comparison with the simple linear dy-
namics at the constant formation of CCs with the development 
time of 5 billion years (actual age of the Galaxy disc is 12 bil-
lion years). 

Source: author's calculations. 

Fig. 4 (left panel) shows the results of calculations carried out with the above 
assumptions with the Eqs 9, 10. The results correspond to different distributions 
of CC development times. All curves have a strongly pronounced maximum 
associated with a SFR peak at T5 billion years (see Fig. 3). The peak in the 
number of civilizations is a linear response to it and can be called a linear de-
mographic wave. For the basic variant of calculations (the solid line) the pre-
sent time (12 billion years) falls within the region of the maximum of the linear 
demographic wave. 

It is important to note that though the relations in Fig. 4 (left panel) are 
constructed for a very limited set of parameters, they can be used to estimate 
within the context of many other scenarios. So, the curve amplitude will be 
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proportional to the average CC lifetime (the parameter L0) and the curve ampli-
tude will also be proportional to the maximum probability of realization of suit-
able conditions (the maximum value in α(M) function, see above). 

Up to this point the conditions leading to the origin of a CC have been sup-
posed to be unchanged during the history of the galactic disk. Actually, varia-
tions of them are possible for a number of reasons (variable background of 
cosmic rays, etc.). The conditions change for sure if the hypothesis about the 
self-consistent galactic origin of life and related phase transition (Panov 2011) 
is true. In this case a great ‘Big Bang’ of life origin took place in the history of 
the Galaxy and if the development time to CC is more or less standard (like 
b() presented by solid line in Fig. 3, left panel – about five billion years), then 
‘Big Bang’ of CCs origins should be followed as well. The theory describing 
this phase demographic peak may be deduced from the described above linear 
theory (we omit the details) and the results of calculation are presented in Fig. 4 
(right panel). It was supposed that the ‘Big Bang’ of life origin to be six billion 
years after the start of formation of the Galaxy disk and the average time of 
development for CC to be five billion years in this calculation. The dashed line 
in Fig. 4 (right panel) shows the partial distribution for planets with the origin 
of life after the ‘Big Bang’ of life origin (as Earth). One can see that we can 
live both before and after the phase peak. 

Thus, the population analysis based on the linear theory and real astrophys-
ical data predicts no-trivial dynamical patterns of evolution of CCs like the lin-
ear demographic wave and the phase peak (see Fig. 3). Non-linear generaliza-
tion of the formalisms leads to even more interesting picture. 

Non-linear Population Analysis 

In the linear theory given above the distributions B(M, τ) and LC(ω) describing 
the origin and life of communicative civilizations were supposed to be inde-
pendent on the number of available civilizations. The function R(M,T) describ-
ing the ‘natural’ star formation rate was also considered to be independent of 
the CC population. This is true until civilizations have no effect on one another, 
nor on conditions of origin of other civilizations, nor on conditions of origin of 
stars. The theory accounting for this effect ceases to be linear. 

The first possibility for a non-linear theory is related to the influence on the 
function R(M, T) – ‘the artificial creation of stars’. The second possibility –  
the influence on the distribution B(M, τ) – must imply some sort of directed 
panspermia of life or intelligent life. The third kind of non-linear phenomena 
related to the changes of the probability LC(ω) by a mutual influence of civili-
zations through contacts by communication channels. We thoroughly study 
only the last possibility here. Other options can be studied by similar methods. 

Without loss of generality, the CCs may be divided into three categories:  
1) the CCs for which the contact is ‘harmful’, because it reduces the duration  
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of the communicative phase; 2) the neutral CCs; and 3) the CCs for which the 
contact is ‘useful’, because it prolongs the communicative phase. We will call 
the last category extrovert communicative civilizations and will denote them as 
ECCs. In the following we will consider the dynamics of the subpopulation of 
the extrovert civilizations only. 

It can be supposed additionally that one of the most important properties  
of ECCs is an increase in efficiency of search for partners and establishment of 
communication under the influence of the already established contacts (we call 
it civilization range). This circumstance will be substantially used below. 

It is important that if ECCs do exist, then a process with a positive feed-
back can begin. The larger is the number of ECCs in the Galaxy, the higher is 
the contact probability. The contact increases the lifetime of the ECC and its 
civilization range, which leads to increasing the ECC population, which raises 
the contact probability again, and so on. The positive feedback loop can lead to 
an avalanche-like phase transition in the Galaxy-scale accompanied by a pow-
erful burst of the number of ECCs. ECCs become prevailing in the Galaxy even 
if the situation was different before the transition. Some details of this phenom-
enon are described by the formalism proposed below. 

In the linear theory the current state of a separate civilization was described 
only by age of the communicative phase , which, in combination with the star 
lifetime and the moment of the civilization origin, made it possible to statisti-
cally predict the fate of a civilization. To account for the mutual influence 
through communication channels they should be described in greater details. 
We will consider that every civilization is described by age  and by a vector 
of parameters q that will be called ‘a quality’. This is a set of characteristics of 
ECCs which affects, first of all, an expected duration of the communicative 
phase and civilization range. It is supposed that the contact increases the ECC 
quality in a sense, and thanks to that the communicative phase prolongs and 
civilization range increases. Thus, the probability of civilization survival should 
be considered as dependent on its quality which must be also one of the argu-
ments of the civilization distribution function: 

).,,,,(),,,();,,(),( TMnTMnMLML CCCC  qq  (11) 
To describe the influence of contacts of a civilization A with a number of 

other civilizations B1, B2, … on the quality of A we suppose the effect to be 
additive: 
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where K(qA,A,qB,B) is some universal function representing the contact mod-
el. Obviously the additive model of contacts is a simplification that may be 
reasonable only in a case of a low number of contacts per civilization. 
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Equations (3–5) for the star distribution function and equations (6–8) for 
the civilization distribution function remain valid in non-linear dynamics. Only 
a new term appears in it describing ‘the current’ of the civilization quality in 
the q-space due to interaction between them. Besides, now the edge condition 
must describe weights of ECCs quality starting the communicative phase.  
The total system of equations for the distribution function nC(M, τ, q, ω, Т) is 
written in the following way: 

C C
C S C q C

n n
= [Λ (M,q,ω)+ Λ (M,τ+ω)] n [j(q,ω,T)n ]

T ω

 
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   (Eq. 12) 

,0 0Сn (M,τ,q ,T)=                                          (Eq. 13) 

,0С Sn (M,τ,q ,T)= n (M,τ,T) B(M,τ,q) .                       (Eq. 14) 
The problem of calculation of the q-current j(q,,T) generally is very difficult 
but it may be solved for the additive model of contacts (11) and for the model 
of a large homogeneous galaxy (edge effects can be neglected): 
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CdM dτn (M,τ,q ,ω ,T )    .                               (Eq. 15) 

In Eq. 15 VG is the galaxy volume, c is the velocity of light, and r(q,,q,) is 
the range of communication between two civilizations with the qualities and the 
ages (q,) and (q,). 

Due to the term corresponding to the quality current, Eq. 12 turns out to be 
very complicated integro-differential equation. However, it may be solved nu-
merically for simple models of contact under some additional simplifying as-
sumptions as described below. 

The civilization quality will be considered to be presented by the only sca-
lar parameter q. It is supposed that the average value of the quality for an iso-
lated civilization (without any contacts) is q = 1. We transfer from the detailed 
description of a civilization by its quality and age to the average value of quali-
ty upon the whole lifetime of the civilization and averaged upon all star masses. 
Further, we will consider the number of civilizations per unit of volume of  
a uniform galaxy. That is, instead of the exact distribution nC(M,,q,,T) we 
consider averaged distribution (q,T) such that VG (q,T)dq = NC(T). We con-
sider the civilization origin rate normalized per galaxy volume unit to be a giv-
en function of the galaxy time f(T), and the distribution density of the parameter 
q for isolated civilizations to be o(q) such that o(q)dq = 1 and the mean value 
of o(q) is equal to 1. Then Eqs. 12–14 can be transcribed in the form of a sin-
gle equation 
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Initial conditions for the function ρ(q,T) can be specified at any time T = T0, 
and Eq. 16 can be solved as the Cauchy initial-value problem. 

     
Fig. 5. Left panel: The function k(q) used in calculations. Right panel: 

The bistability in an ECC population obtained by numerical so-
lution of the Eq. 16 

Source: author's calculations. 

To calculate the divergence term in  Eq. 16 we adopted the following simple 
model of contact 
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)( ,                                 (Eq. 17) 

where the function k(q) is shown in Fig. 5 (left panel) with 0 = 0.001 years -1. 
With Eq. 17 the Eq.  15 is simplified to 
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For the inverse lifetime function C(q) and the range function r(q,q) various 
assumptions may be taken but we adopted the following ones here: 
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The expression for r(qA,qB) was obtained under the assumption that reception 
and transmission are fulfilled only by a beam antenna (we have to omit the de-
tails of the explanation). The distribution 0(q) was taken to be Gaussian one 
with mean value 1 and dispersion 0.2. 

Some results of calculations are shown in Fig. 5 (right panel). Let us eluci-
date the computing technique and sense of the obtained results. It was supposed 
that at the initial time T = 0 there were no civilizations, (q,0) = 0. After that 
the civilization origin rate F begins increasing slowly, so that at any time an 
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almost complete equilibrium is achieved in the population of ECC. Fig. 5 (right 
panel) shows the relation between the number of civilizations and F (both nor-
malized to the volume of our Galaxy). The equilibrium number of civilizations 
increases along with F. In the process, first a point in the diagram moves along 
the lower branch of hysteresis loop from left to right and the number of civili-
zations is still small (less than 2,000). This is the silence epoch, the probability 
P to find a partner to contact for any civilization is P  1. 

However, due to the increasing number of civilizations, the situation be-
comes unstable, and when F achieves a value of about 1.35 civilizations per 
year, and P  0.05, then the equilibrium is broken. Due to the positive feedback 
between the number of contacts, civilization ranges and lifetimes, the number 
of civilizations and the probability of their interaction start increasing as an 
avalanche. As this takes place, the number of civilizations increases sharply by 
about an order, and the average number of partners per one civilization 
achieves 10. This phase transition ends because the possibility of ‘improving’ is 
exhausted at large values of the quality q (see Fig. 5, left panel). The saturation 
of contacts epoch starts (F > 1.4). 

Then, in calculation, the civilization origin rate stops increasing (at 
F = 2.5 yeas –1) and begins to slow down. First, a point in the diagram moves 
backwards, repeating the trajectory of F growth. However, when reaching  
a critical value of F = 1.35 per year, the reverse transition does not occur. This 
is prevented by the positive feedback ‘number of contacts – lifetime and range’.  
The contact saturation epoch continues. Here two different stable states of the 
civilization population correspond to every value of F: one on the lower branch 
of hysteresis loop, the other on the upper branch. This is the bistability phe-
nomenon. Only when P approaches a value of about 0.5, the positive feedback 
already cannot keep the contact saturation phase from destruction, the number 
of civilizations sharply fall, and the silence epoch returns. 

We neglected the fluctuations of distribution density of civilization in the 
Galaxy. Fluctuations can create the saturation of contacts phase locally with 
subsequent growth. 
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