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Abstract   
The term, exponential, has long been associated with the growth of organismal 
populations from microbial populations to the populations of complex multicel-
lular eukaryotes. It can be shown, however, that human population growth oc-
curs at greater-than-exponential rates. Von Foerster et al. (1960) but followed 
more elegantly by Korotayev et al. (2006a), have proposed models to more 
accurately represent this characteristic mode of human population growth. In 
this paper an underlying mechanism is proposed which generates this greater-
than-exponential growth. The mechanism is represented by a toy model of two 
differential equations of interacting populations, the interactions of which en-
hance the reproductive abilities of the other population. The end result of this 
enhancement due to positive human interaction, a quintessential characteristic 
of our species, is a pattern of growth motivated by a greater-than-exponential 
rate of growth. It should be noted that the model being proposed is one of many 
potential models and not the sole, the only, possible model.   

Keywords: population, exponential, greater-than-exponential growth (GTEG), 
hyperbolic. 

Introduction 
In 1960 von Foerster et al. proposed a model of global population growth in 
which the form of the growth was greater than exponential. Korotayev, 
Malkov, and Khaltourina (2006a, 2006b) expanded on this model and showed 
clearly that the form of what they named hyperbolic growth fit the data of hu-
man population growth over the past ten thousand years quite well. Specifical-
ly, the integral form of the equation, dN/dt = aN2, gives Nt = a/(t0 – tn), where 
a is a fitted constant, tn represents some time before t0, and t0 represents what 
von Foerster et al. called Doom's Day, the time at which, to use a very appro-
priate Russian phrase, the population enters its ‘blow-up’ phase, i.e. hyperbolic 
growth reaches a critical point in finite time. Note also that a hyperbolic growth 
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model is also recognized as a valid fit for human population data by Joel Cohen 
in his book How Many People Can the Earth Support? (Cohen 1995).  

In light of the fact that Korotayev et al. (2006a, 2006b) have shown how 
important this form of growth, labeled hyperbolic growth, is to understanding 
human demography over time, it will be important to begin to understand the 
mechanism behind such growth. It should be noted here that Korotayev et al. 
(Ibid.) have shown that this form of growth applies over both short- and long-
term views of human population change ranging from a period of ten thousand 
years to much shorter periods of a few hundred years. Interestingly, if growth 
form does not change with time scale, an implication of such growth is that it is 
(probably) scale-free in context. This form of growth also manifests itself 
above the population level of biological organization (Markov and Korotayev 
2007). However, that will not be the focus of this short paper.   

The focus of this paper is to present a mechanism for the type of popula-
tion behavior giving rise to the blow-up phase or regime, or stated another way, 
to give rise to greater-than-exponential growth (GTEG). (The acronym, GTEG, 
will be used throughout this paper to represent all patterns of population growth 
that are greater than exponential growth including but not limited to bi-
exponential and hyperbolic growth.) Exponential growth will be compared to 
GTEG, and it will be shown that while the growth of most animal populations 
can be represented by exponential growth, human population growth cannot 
and cannot because of a quintessentially human characteristic, that of human 
interaction which occurs at a much higher level than the interaction between 
members of other animal species. Specifically, the toy model will be used to 
show that total population growth within a set of interacting sub-populations is 
greater than total growth that is the sum of non-interacting sub-populations. 

Alternative Models of Population Growth 
Exponential population growth is recognized as a basic form of growth exhibi- 
ted by a variety of organisms (e.g., Hutchinson 1978; Gotelli 2001). As noted 
previously, exponential population growth is given by the integral solution to 
the differential equation, dN/dt = rN, which yields, Nt = N0e

rt, with N0 = the 
initial size of the population, Nt = the size of the population at some future point 
in time, t, and r = a fitted constant which is the growth rate of the population. 
The log-transform of this equation is: ln Nt = lnN0 + rt. It should be noted that 
the form of this equation is linear, and therefore raw data plotted either on 
semi-log graph paper or log-transformed population data plotted against time 
must give a straight line plot.  

Both exponential growth and the log-transform of exponential growth are 
represented in the following graphs. In Fig. 1 one can see that the graph turns 
sharply upward and would continue to grow in that fashion if time units greater 
than 64 were used. In Fig. 2 the log-transformed population data are plotted 
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against the same set of time values. Here the plot is linear, and this form is rep-
resentative of all exponential growth models that are log-transformed. So, any 
log-transform of population data yielding a linear plot represents a log-
transformation of data of an exponentially growing population. This would not 
be the case of population data of GTEG populations. In this case the log-
transformation of the data would yield a curve similar in shape to the un-
transformed exponential data. In Fig. 3 the raw data of a population growing at 
GTEG are represented, and in Fig. 4 the natural log-transformed data are plot-
ted over the same time period. 

 
Fig. 1. This graph represents the growth of a population over 64 time 

units based on the equation, N = 10e.1t, where the initial pop-
ulation size is 10, e is the base of the natural logarithms, and 
t represents the arbitrary units of time 

 
Fig. 2. This graph represents the natural log-transformed data of 

population size used in Fig. 1 plotted against time in arbitrary 
units. The equation used is: lnN = ln10 + .1t. Variables are 
defined as in Fig. 1 
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In Fig. 3 the form of the curve is not unlike that of an exponential curve in that it 
begins to rise slowly and then toward the end of the time period accelerates in 
growth, however, when the natural log-transformed data are plotted, a curve 
rather than a straight line is produced (see Fig. 4.). In other words, mathematical 
words, the relationship can be represented by a power function, i.e. lnN = atb, in 
which, when b > 0, the relationship is non-linear and when b > 1, the relation-
ship will produce a curve which is concave up as in Fig. 4. This implies that the 
antilog-transformed equation, N = Aet^b, will grow at greater-than-an exponential 
rate as the exponent is not constant but is itself a power function.   

 
Fig. 3. Population growth in which the growth rate is GTE is repre-

sented in this graph. Note that the time period is the same as 
in Figs 1, 2, and 4. The equation used to generate this data 
is: Nt = 10e.1t^1.5 

 
Fig. 4. This graph represents the natural log-transformed data of Fig. 3 

and can be produced by the equation, lnN = ln10 + .05t1.5. 
The plot is unquestionably non-linear 
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Real World-System Data 
Using the previously defined types of growth, either exponential growth or 
GTEG, the data on population size over time for the world-system in toto can 
be evaluated to determine which of these two models more realistically repre-
sents the pattern of growth of an actual human population. In Figs 5 and 6 
data for the world-system population from 800 CE through 2000 CE are plot-
ted either as unaltered population size (see Fig. 5), or as natural log-trans- 
formed population size (see Fig. 6), in which both sets of data are plotted 
against time. Fig. 5 superficially resembles the curves represented in both 
Fig. 1 and Fig. 3. So, simply on visual inspection, it would be difficult to de-
termine which of the two curves more appropriately matched that of Fig. 5. 
However, even casual inspection of the graph in Fig. 6 unquestionably shows 
that the log-transformed population data are not linear. In Fig. 6 both a linear 
and an exponential fit are represented, and even without the aid of formal 
statistical analysis, the exponential curve can be seen to be a much better fit. 
This implies that the rate of growth of the world-system population is GTEG. 
Interestingly, if the populations of other organisms are assessed, they are 
found to be exponential, so, what is there about the mechanism of human 
population growth that produces a GTEG pattern? This question will be ad-
dressed in the following section.  

 
Fig. 5. Population size for the world system is graphed against time 

for the period, 900 CE to 2000 CE 
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Fig. 6. The population data in Fig. 5 are natural log-transformed and 

plotted over the same period of time. Note that both a linear 
and an exponential regression are fitted to this data with the 
exponential regression the better fit of the two  

A Toy Model Mechanism for GTEG 
Based on the information of the previous section a generalized equation repre-
senting GTEG has the form, Nt = Aet^b, and the question then becomes: What is 
the reality of the exponent, b, of the exponent, t or time? Why is it that animal 
populations other than human can be represented more simply by the equation, 
Nt = Aet? Clearly, the log-transform of both equations gives, ln Nt = lnA + t and 
ln Nt = lnA + tb respectively. The first transformed equation is linear, while the 
second one is exponential, and we need to consider what it is about humanity 
that gives the exponent of the exponent, b, its reality. 

Humans are more closely connected with each other both locally and at 
distance, and I wish to propose that it is this higher level of interaction that is 
ultimately responsible for GTEG. Consider this simple model of interaction 
between two rural communities. One community is primarily devoted to far- 
ming, actually producing food for human consumption, while the second com-
munity is devoted to producing farming equipment. If both communities inter-
act then the farming community with the aid of farming equipment, for exam-
ple tractors, reapers, etc., will produce food for both communities, while the 
second community will, as noted, supply the first with farm equipment. This 
synergism will aid both communities, and without it, both communities will 
have to both produce their own farm equipment and raise their own food. 

Mathematically with respect to population growth, the following set of dif-
ferential equations is analogous to the synergism described in the previous pa-
ragraph: 

dN1/dt = (r1 + aN2)N1, (Eq. 1) 

and dN2/dt = (r2 + bN1)N2, (Eq. 2) 
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where r1 and r2 are the growth rates of the respective populations, N1 and N2, 
and a and b are constants representing the degree of synergism between N1 and 
N2. As can be seen, the growth factor for each population includes their own 
rate of growth and a positive contribution from the other population, either aN2 
or bN1. The contributions of each population to the other's growth is represent-
ed as a linear contribution only because linearity represents the simplest case. 
With further research into real cases, the component that each population gives 
to the other may in fact be non-linear, however, the focus of this paper is to 
provide a possible simple mechanism by which GTEG can be produced by 
synergism between populations and do so as simply as possible. Without this sy- 
nergism, the above equations would simply represent exponential growth and 
would have the form: dN1/dt = r1N1, and dN2/dt = r2N2. But, what is the actual 
reality that the above coupled equations will produce GTEG? 

Inspection of the set of differential equations shows that the growth com-
ponent of each equation, r + xN, contains a constant component, r, and a com-
ponent that is not constant but increases. More explicitly, this component is xN, 
where x is a constant and N grows at least at a rate, dN/dt = rN, which on solu-
tion gives, Nt = N0e

rt. In other words, this component grows at least exponen-
tially, and therefore the growth of the rate at which this population grows is at 
least exponential. However, since the contributing population is also growing 
at GTEG due to the contributions of the first population, then the first popula-
tion must also grow at GTEG and vice versa. This can be shown numerically 
using the simulated data in Table 1. By graphing the data of the summed popu-
lations from the table, a graph of population over time is produced (see Fig. 7). 
If these same data are natural log-transformed, then if the growth is exponential 
a linear plot should be expected, while if the growth is GTEG, then a curve 
representing exponential growth of the growth rate should be expected. It is 
the latter type of graph that is produced, so the growth is GTEG and is due 
to the interaction components of the equations, i.e. the xN component of the 
growth component, r + xN. It should be noted here that without the xN compo-
nents in each of the coupled differential equations, these differential equations 
would have the form, dN/dt = rN, which would, of course, yield exponential 
growth and not GTEG. 

Table 1. 

TIME 1 2 3 4 5 6 7 8 9 10 11 12 

N1 1 1.15 1.33 1.55 1.83 2.19 2.66 3.23 4.10 5.36 7.29 16.34 

N2 1 1.17 1.38 1.63 1.93 2.30 2.77 3.36 4.14 5.20 6.74 13.57 

N1 & N2 2 2.32 2.71 3.18 3.76 4.49 5.43 6.59 8.24 10.56 14.03 29.91 

Ln N1 & 
N2 

.69 .84 1.00 1.16 1.32 1.50 1.69 1.89 2.11 2.36 2.64 3.40 
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Fig. 7. This graph represents the combined population data, N1 and 
N2, given in Table 1 plotted against time. While this plot is 
unquestionably greater than linear, it is impossible to deter-
mine by inspection whether or not the graph is exponential or 
GTEG 

 

Fig. 8. The population data in Fig. 7 are natural log-transformed and 
plotted over the same period of time. Both a linear and an ex-
ponential regression are fitted to this data, and it can be seen 
that the exponential regression is the better fit implying that 
the actual mode of population growth is not exponential but 
GTEG 

Since the growth of the simulation, as represented in Figs 7–8, and that of the 
world system, as represented in Figs 5–6, are both greater-than-exponential, it 
is proposed that the mechanism by which the simulation data are produced 
could also be the mechanism by which the actual world-system population 
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grows at a greater-than-exponential rate. In other words, human interaction at 
the inter-group level can be modeled to produce GTEG by coupled differential 
equations in which the growth component contains within it a component of 
exponential growth due to the interaction with another population. Clearly, the 
world-system consists of many interacting populations not just two. However, 
what has been presented here is a toy model of a proposed mechanism by 
which the world-system population pattern of growth is GTEG and not expo-
nential. 

Summary 
1. Von Foerster et al. (1960) and Korotayev et al. (2006a) have shown that 

human populations grow at a rate greater than exponential. 
2. Exponential growth increases at a constant rate, and as a consequence 

the log-transformed population data give a linear plot against time. 
3. Greater-than-exponential growth (GTEG) yields a curved plot in which 

the growth rate increases with increasing size of the population. 
4. Real world-system data when log-transformed yield as expected an ex-

ponential curve. 
5. A mechanism is proposed by which human interaction between groups 

yields GTEG. 
6. This mechanism in its simplest form is represented by the following two 

differential equations: dN1/dt = (r1 + aN2)N1, and dN2/dt = (r2 + bN1)N2. 
7. It is shown by numerical simulation that the combined growth of the 

populations represented by these two equations gives GTEG, suggesting that 
these coupled equations represent a model for human population growth. 
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